

Improving Collocation Correction by Ranking Suggestions Using Linguistic Knowledge

Roberto Carlini¹, <u>Joan Codina-Filba¹</u>, Leo Wanner²,¹

(1) Natural Language Processing Group, Department of Information and Communication Technologies Pompeu Fabra University, Barcelona

(2) Catalan Institute for Research and Advanced Studies (ICREA)

Collocations:

- Many definitions:
- Is a binary idiosyncratic co-occurrence of lexical items between which a direct syntactic dependency holds and where the occurrence of one of the items (the *base*) is subject of the free choice of the speaker, while the occurrence of the other item (the *collocate*) is restricted by the base (Hausmann (1984), Cowie (1994), Mel'*cuk (1995))
- "collocations should be defined not just as 'recurrent word combinations', but as 'arbitrary recurrent word combinations'". Benson (1989)

Collocations: Base and collocate

- The base (noun) is free: *a walk*
- Once the base is chosen, there are some arbitrary recurrent collocates (verbs) to express the corresponding meaning: do, go for, go on, have, take
- Not only verb+noun combinations
 - adj+noun(base): low/short long/tall men
 - verb(base)+adverb: walk calmly

Dependency parsing

- Current systems: Based on co-occurrence in a corpus:
 - Sentence/Window
 - But what is near is not always what is syntactically related
- Dependency parsing finds direct relations

Dependency parsing

Detection of governing prepositions

Each dependency relation is assigned separately

Arbitrary recurrent?

- "collocations should be defined not just as 'recurrent word combinations', but as 'arbitrary recurrent word combinations'." Benson (1989)
- PMI: Pointwise Mutual information
 - Detects whether two words are found together more often than expected if they were random independent variables.

$$PMI(base, collocate) = \log \left(\frac{P(base \cap collocate)}{P(base)P(collocate)} \right)$$

PMI: Pointwise mutual information

The maximum value of PMI is not fixed → making difficult to rank collocates a learner can pick from → NORMALIZE

Normalize PMI

 Bouma, G. (2009). Normalizes PMI using combined probability

$$NPMI_{bc} = -\frac{PMI}{\log(p(b\cap c))}$$

- It penalizes the collocates which are very common words
- We normalize PMI using only probability of the collocate

$$NPMI_c = -\frac{PMI}{\log(p(c))}$$

Normalize PMI

Results

Collocates for telefono 'phone'

collocate	Freq. <i>Collocate</i>	Freq. base ∩ collocate	PMI	NPMI _{CB}	NPMI _C
pinchar	403	77	2,789	0,558	0,652
descolgar	230	61	2,931	0,575	0,648
sonar	2218	105	2,183	0,449	0,617
coger	4627	123	1,932	0,403	0,6
intervenir	1294	55	2,136	0,415	0,566
colgar	1723	61	2,057	0,403	0,564
llamar	12957	111	1,44	0,298	0,519
desconectar	234	14	2,285	0,398	0,506
contestar	3066	41	1,634	0,31	0,481
atender	8563	57	1,331	0,259	0,451
usar	6286	46	1,372	0,263	0,444
habilitar	760	14	1,773	0,309	0,443

Conclusions:

- We use dependencies to find the sentences where the base and collocate are syntactically related
- We can differentiate between the different dependency relations and detect governing prepositions
- We changed the Normalized PMI to avoid a penalization of common collocates and take into account that collocations are asymmetric
- As a result, the rank is more natural and suggestions to learners are improved