An approach to measure pronunciation similarity in second language learning using radial basis function kernel Christos Koniaris University of Gothenburg, Sweden ### **Problem Formulation** - Perceptual diagnostic evaluation of non-native speech vs. spectral-based similarity measure - Quantitatively measure the degree of difference in pronunciation of phonemes by a group of nonnative speakers as compared to a group of native speakers - Examine the radial basis function kernel or RBF kernel as an alternative similarity measure to Euclidean distance # **Approach** - Block diagram of the method - Compute native perceptual assessment degree (nPAD) $$\Theta_{\ell} = \frac{A_{\ell}}{A_{n}}$$ ## **Application** - Spectral model: frequency domain psychoacoustic model - Linguistic study: a survey on identifying common problems for speakers of a certain L1 background - Data: repeating text after a natively speaking virtual language tutor (two sessions). Recordings from: - 37 non-native speakers, 11 L1 backgrounds - 11 native speakers (Swedish) ## **Examples of the results (vowels)** | L1 bkgr. | Туре | nPAD Problematic vowels [ordered] | |----------|--------------------------|--| | German | $\Theta^{\it eucl}$ | $\underline{\alpha}:, \underline{\epsilon}, \underline{v}:, \underline{u}:, \underline{v}, \underline{\epsilon}:, \underline{\sigma}, \underline{\alpha}:, \underline{i}:, \underline{\sigma}, \underline{\alpha}:$ | | | Θ [bf250 | æ:, e:, y, ø:, $\underline{\alpha}$:, $\underline{\alpha}$:, $\underline{\epsilon}$:, \underline{i} , \underline{y} :, \underline{a} , \underline{a} , \underline{i} : | | | Θ [bf500 | æ:, e:, y, ø:, $\underline{\alpha}$:, ɛ:, $\underline{\mathbf{u}}$:, a, i, $\underline{\mathbf{y}}$:, ə, $\underline{\mathbf{i}}$: | | | Θ ℓ^{bf1000} | æ:, ø:, y, e:, $\underline{\alpha}$:, ε:, \underline{a} , \underline{u} :, \underline{i} , $\underline{\alpha}$:, \underline{y} :, $\underline{\vartheta}$ | | Chinese | $\Theta^{\it pucl}$ | $\underline{\mathbf{e}}$, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$, $\underline{\mathbf{y}}$:, $\underline{\mathbf{u}}$:, $\underline{\mathbf{e}}$ $\underline{\mathbf{e}$:, $\underline{\mathbf{e}}$ $\underline{\mathbf{e}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$ | | | Θ [bf250 | $\underline{\mathbf{o}}$, $\underline{\mathbf{u}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{o}}$ $\underline{\mathbf{e}}$:, $\underline{\mathbf{o}}$:, $\underline{\mathbf{e}}$: | | | ⊕Į ^{bf500} | $\underline{\mathbf{o}}$, $\underline{\mathbf{u}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{e}}$:, $\underline{\mathbf{o}}$:, $\underline{\mathbf{o}}$:, $\underline{\mathbf{v}}$:, $\underline{\mathbf{o}}$:, $\underline{\mathbf{e}}$ $\mathbf{e$ | | | Θ f^{bf1000} | $\underline{\alpha}$:, \underline | **Examples of the results** (consonants) | L1 bkgr. | Type | nPAD Problematic consonants [ordered] | |----------|--------------------------|--| | German | Θ ℓ eucl | $\underline{\mathbf{h}}, \underline{\mathbf{n}}, \underline{\mathbf{v}}, \mathbf{n}, \underline{\mathbf{m}}, \underline{\mathbf{b}}, \underline{\mathbf{r}}, \underline{\mathbf{d}}, \underline{\mathbf{l}}, \mathbf{k}, \underline{\mathbf{s}}, \mathbf{t}, \mathbf{p}, \underline{\mathbf{h}}, \mathbf{f}, \varepsilon, \underline{\mathbf{s}}$ | | | Θ [bf250 | \underline{s} , \underline{c} , \underline{s} , \underline{r} , \underline{l} , $\underline{\underline{h}}$, \underline{g} , $\underline{\underline{n}}$, $\underline{\underline{d}}$, \underline{k} , \underline{t} , $\underline{\underline{b}}$, \underline{h} , \underline{f} , $\underline{\underline{v}}$, \underline{n} , \underline{p} | | | ⊕Į ^{bf500} | \underline{s} , \underline{c} , \underline{s} , \underline{r} , \underline{l} , \underline{f} , \underline{g} , \underline{n} , \underline{d} , \underline{k} , \underline{t} , \underline{b} , \underline{h} , \underline{f} , \underline{v} , \underline{n} , \underline{p} | | | Θ[^{bf1000} | c , \underline{s} , s , \underline{r} , \underline{l} , \underline{g} , \underline{n} , k , \underline{d} , t , \underline{h} , \underline{b} , f , \underline{v} , n , \underline{f} , j | | Chinese | $\Theta_\ell^{\it eucl}$ | $\underline{\mathbf{h}}$, $\underline{\mathbf{v}}$, $\underline{\mathbf{m}}$, $\underline{\mathbf{n}}$, $\underline{\mathbf{b}}$, $\underline{\mathbf{r}}$, $\underline{\mathbf{l}}$, $\underline{\mathbf{d}}$, $\underline{\mathbf{k}}$, $\underline{\mathbf{t}}$, $\underline{\mathbf{f}}$, $\underline{\mathbf{g}}$, $\underline{\mathbf{t}}$, $\underline{\mathbf{p}}$, $\underline{\mathbf{j}}$, $\underline{\mathbf{h}}$, $\underline{\mathbf{s}}$ | | | Θ [bf250 | $\underline{\mathbf{h}}$, $\underline{\mathbf{l}}$, $\underline{\mathbf{r}}$, $\underline{\mathbf{n}}$, $\underline{\mathbf{j}}$, $\underline{\mathbf{g}}$, $\underline{\mathbf{f}}$, $\underline{\mathbf{k}}$, $\underline{\mathbf{b}}$, $\underline{\mathbf{v}}$, $\underline{\mathbf{m}}$, $\underline{\mathbf{t}}$, $\underline{\mathbf{t}}$, $\underline{\mathbf{p}}$, $\underline{\mathbf{d}}$, $\underline{\mathbf{h}}$, $\underline{\mathbf{s}}$ | | | ⊕Į ^{bf500} | $\underline{l}, \underline{r}, \underline{h}, \underline{n}, \underline{j}, g, \underline{k}, f, b, \underline{v}, m, \underline{n}, \underline{t}, \underline{t}, \underline{p}, d, \underline{h}, \underline{s}$ | | | Θ f^{bf1000} | $\underline{l}, \underline{r}, \underline{\eta}, \underline{j}, g, \underline{k}, \underline{h}, b, f, m, \underline{v}, \underline{n}, \underline{t}, \underline{t}, \underline{p}, d, \underline{h}, \underline{s}$ | ### **Conclusions** - Method to automatically, quantitatively evaluate non-native speakers' pronunciation - Compare similarities between power spectrum domain and auditory perception domain - nPAD to quantify non-native similarities in comparison to native variations - Compare RBF kernel with Euclidean distance