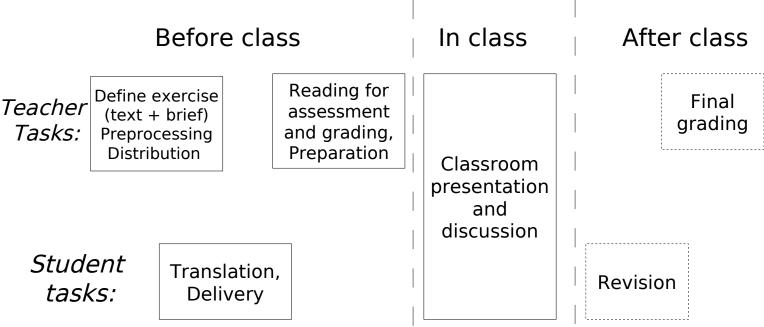


NLP for the translation class

Lars Ahrenberg and Ljuba Tarvi

2nd workshop on NLP for Computer-Assisted Language Learning Oslo, May 22, 2013


Overview

- Background
- Our proposal
- The Token-Equivalence Method (TEM)
- Alignment experiments
- Conclusions

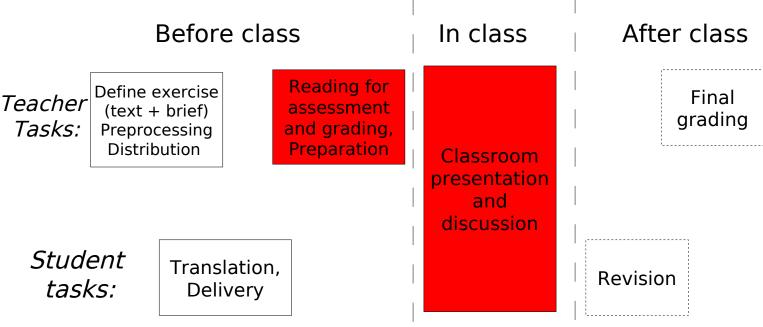
Process of a translation exercise

Examples of computational aids for the translation exercise

- E-learning environments
 - Fictumová, 2004, 2007
- Corpora
 - Lopez-Rodriguez and Tercedor-Sanchez, 2008;
 - Pastor and Alcina, 2009
- CAT tools
- Assessment of translations as literal or liberal
 - Shei and Pain, 2002

Our idea

- Computer-aided support for the Token-Equivalence Method (TEM; Tarvi, 2004)
- A new application area for alignment technology


Supporting

- teacher's assessment and grading
- discussion in class

Process of a translation exercise

Token alignment as a basis for instruction in class

- Segment views
 - display of different translations of the same source segment
- Token views
 - display of different translations of the same token(s)
- Type views
 - e.g. frequency tables of translations of words and phrases
- Global views
 - metrics and grades computed for the full text or parts thereof

The Token-Equivalence Method (TEM)

- Token correspondences, based on
 - content words
 - denotational meaning
- Frames
 - metrics that quantify relations between source and translation
 - combined to rank translations

An example (RU - EN)

Pushkin, Eugene Onegin, stanza LIX: 1-2

- Proshla lyubov, yavilas' muza, i projasnilsya tyomnyi um.
 Translation (by Nabokov)
- Love passed, the Muse appeared, and the dark mind cleared up.

 Indexing tokens
- 1:Proshla 2:lyubov, 3:yavilas' 4:muza, 5:i 6:projasnilsya 7:tyomnyi 8:um.
 [passed] [love] [appeared] [muse] [and] [cleared up] [dark] [mind]
- 1:Love 2:passed, 3:the 4:Muse 5:appeared, 6:and 7:the 8:dark 9:mind 10:cleared 11:up.
 - "Standard" alignment representation
- 1-2 2-1 3-5 4-4 5-6 6-10 6-11 7-8 8-9 0-3 0-7

An example (RU - EN)

Pushkin, Eugene Onegin, stanza LIX: 1-2

- Proshla lyubov, yavilas' muza, i projasnilsya tyomnyi um.
 Translation (by Nabokov)
- Love passed, the Muse appeared, and the dark mind cleared up.
 Indexing tokens
- 1:Proshla 2:lyubov, 3:yavilas' 4:muza, 5:i 6:projasnilsya 7:tyomnyi 8:um.
 [passed] [love] [appeared] [muse] [and] [cleared up] [dark] [mind]
- 1:Love 2:passed, 3:the 4:Muse 5:appeared, 6:and 7:the 8:dark 9:mind 10:cleared 11:up.
 - "Standard" alignment representation
- **1**-2 2-1 3-5 4-4 5-6 6-10 6-11 7-8 8-9 0-3 0-7

multiword correspondence

An example (RU - EN)

Pushkin, Eugene Onegin, stanza LIX: 1-2

- Proshla lyubov, yavilas' muza, i projasnilsya tyomnyi um.
 Translation (by Nabokov)
- Love passed, the Muse appeared, and the dark mind cleared up.
 Indexing tokens
- 1:Proshla 2:lyubov, 3:yavilas' 4:muza, 5:i 6:projasnilsya 7:tyomnyi 8:um.
 [passed] [love] [appeared] [muse] [and] [cleared up] [dark] [mind]
- 1:Love 2:passed, 3:the 4:Muse 5:appeared, 6:and 7:the 8:dark 9:mind 10:cleared 11:up.
 - "Standard" alignment representation
- 1-2 2-1 3-5 4-4 5-6 6-10 6-11 7-8 8-9 0-3 0-7

null links

Differences TEM and standard SMT alignment

Aspect	TEM	SMT
Approach	manual	automatic
Punctuation	ignored	tokenized
Token types	two types	one type
Multiword units	single tokens	several tokens

Some definitions

- t_s: a source token
- t₊: a target token
- null(t): a token without correspondent
- nonnull(t): a token with at least one correspondent
- cont(t): a content token
- gram(t): a grammar token

TEM frames

- Basic content frame
 - "the percentage of source content tokens that have received a translation"
 - □ BCF = $100 * | \{ t_s | cont(t_s) \land nonnull(t_s) \} | / | \{ t_s \} |$
- Optional content frame
 - □ OCF = $|\{t_{\tau} | cont(t_{\tau}) \land null(t_{\tau})\}|$

TEM frames (cont.)

- Basic formal frame
 - "the number of grammar tokens in the translation"
 - □ BFF = $|\{t_{\tau} | gram(t_{\tau}) \land null(t_{\tau})\}|$
- Optional formal frame 1
 - "the percentage of source tokens that are translated by a token of the same part-of-speech"
- Optional formal frame 2
 - "the percentage of pairs of source tokens whose order and dependency relation is kept under translation"

The translation quotient (TQ)

- The TQ is defined as the average of all frames that are expressed as percentages:
- TQ = (BCF + OFF1 + OFF2) / 3
- All frames may be used to compute a rank for each translation

Word alignment for the translation class

- Source texts are short
- Translations, on the other hand, may be many
- Source texts are known beforehand
- Content tokens and grammar tokens should be treated differently
 - → Statistical and rule-based methods may be combined

Alignment experiments

- Russian-English data
 - 8 translations of 17 stanzas from Eugene Onegin
- English-Swedish data
 - 5 translations of two small extracts of English prose text used as exercisez in a course.
 - J.D. Salinger. Catcher in the rye, New York, 1951 Roddy Doyle: The Van, 1991.
- Systems used
 - Giza++ (both corpora)
 - A "pressure-aligner" (only EN-SE), using
 - a dictionary
 - part-of-speech patterns
 - alignment topology

Alignment results, RU-EN, Giza++ (model 4)

	Precision	Recall	F-measure
1 trl, all links	0,308	0,298	0,303
8 trls, no null links	0,434	0.467	0.450
8 trls, all links	0,482	0.480	0.481

Note: the gold standard used has some 40% added tokens, while Giza++ gives 20%.

Alignment results for EN-SE, Giza++ (model 4)

	Precision	Recall	F-value
1 trl, no null links	0.751	0.652	0.698
1 trl, all links	0.681	0.681	0.681
5 trls, no null links	0.816	0.698	0.752
5 trls, all links	0.752	0.738	0.745

Alignment results for EN-SE, rule-based aligner

	Precision	Recall	F-value
PA1, no null links	0.815	0.492	0.614
PA1, all links	0.502	0.554	0.527
PA2, no null links	0.885	0.608	0.721
PA2, all links	0.606	0.664	0.633

PA1 has a small lexicon, while PA2 has a lexicon adapted for the corpus.

Alignment results for EN-SE, combinations of Giza++ and rule-based aligner

	Precision	Recall	F-value
Union, no null	0.775	0.777	0.776
Union, all	0.739	0.789	0.763
Intersection, no null	0.980	0.530	0.688
Intersection, all	0.875	0.543	0.670
Grown, no null	0.849	0.665	0.746
Grown, all	0.794	0.660	0.721

Observations on alignment performance

- As expected, adding more translations improves the results of the statistical aligner
- Since the source text is known, and small, creating a dictionary for the source adapted for the task is not so much work and improves the results of the pressure aligner substantially
- A combination of statistical and dictionary-based alignment can give very high precision
- All possibilities have not been explored yet...

Conclusions

- There is much work ahead
 - implementation
 - trying it out
- Even with further improvements in the automatic tools, there will still be much to do for the teacher in reviewing and correcting token alignments
 - Need for good interactive tools!

Thank You

