Ranking corpus examples from "best" down

Initial user evaluation of hit-ex algorithms for Swedish

Elena Volodina, Richard Johansson, Sofie Johansson Kokkinakis Centre for Language Technology, Språkbanken, University of Gothenburg, Sweden

Background

- •Selection of examples for L2 training and Lexicography:
 - •Invent subjective and time-consuming
- •Select manually hundreds of corpus hits, selection becomes time-consuming
- •(Semi-)automatic pre-selection a possible alternative
- Principle: rank examples according to their appropriateness or "goodness"; the best ones come to the top
- Definition of "goodness" in linguistic parameters:
 - Optimal sentence length
 - Optimal word length
 - Presence of subject and finite verb
 - •etc.
- Previous tests with automatic ranking: for English (Kilgariff et.al. 2008), for Slovene (Kosem et.al. 2011), for German (Segler 2007, Didakowski et.al. 2012)

Ranking algorithms for Swedish (hit-ex)

- •Algorithm #1 at the moment:
 - •each example is scored independently of all other examples using a manually defined set of heuristic rules, each of which has an associated weight parameters under consideration: sentence length; word frequency; keyword position in the sentence; presence of finite verb;
 - •only "soft" parameters, i.e. if they are not met, examples are considered anyway, through punished by withdrawing points; •equal "punishment" for each parameter;
- •Algorithm #2 (Borin et.al. 2012):
 - Principle: examples should not only be typical but also different
 - Difference is formalized as a similarity metric, based on the Euclidean distance between feature vectors (words and syntactic relations);
 - Vectors represent words in the context of the search terms, as well as a number of syntactic features derived from dependency trees.

Evaluation set-up 1

- •Critical questions:
 - •Can the two algorithms satisfactorily rank examples?
 - •Which of the two performs better?
- •What other parameters might be necessary to include to improve their performance as predictors of good examples.
- •Evaluators background:
 - •L2 teachers/computational linguists (2)
 - •lexicographers/computational linguists (2)
- •lexicographer (1)
- •all 5 have doctoral degrees
- Evaluators' mother tongues:
- •3 native and 2 non-native Swedish speakers Evaluators' gender:
- •2 men, 3 women
- •Test items (keywords):
 - •60 test items from Kelly list, 10 per proficiency level defined in CEFR terms (Council of Europe, 2001)
 - Only lexical word classes: nouns, verbs, adjectives, adverbs
 - Number of items from each word class reflects word class distribution per proficiency level

Evaluation results. Quantitative data.

	acc	unacc	doubtful	total
alg# 1	56,6%	19,7%	23,7%	100%
alg #2	50,3%	27%	22,7%	100%
Total (#1+#2)	53,5%	23,3%	23,1%	100%

#2, generally. - "well-formedness" of examples in isolation (#1) versus dispersion better perceived in a group of examples (#2)

alg#1 "won" by 6,3% over

Lexicographers more
positive than L2
teachers: 63,6% vs
46,7% accepted

alg#1 "won" by 5% for lexicographers and by 7% for L2 teachers

	user groups	acc	unacc	doubtful	total
	Lexicographers, total	63,6%	20%	16,4%	100%
	alg #1	66,1%	18,6%	15,3%	100%
	alg #2	61,1%	21,4%	17,5%	100%
	L2 teachers, total	46,7%	25,5%	27,7%	100%
	alg #1	50,2%	20,4%	29,3%	100%
	alg #2	43,2%	30,6%	26,1%	100%

Totally: 54% of examples approved; 57% for alg#1 and 50% for alg#2

Evaluation. Quantitative data 2.

levels	acc	uriacc	doubtiui	lolai
A1	51,3%	27,2%	21,5%	100%
alg #1	49%	27,5%	23,5%	100%
alg #2	53,7%	26,8%	19,5%	100%
A2	48,7%	20,7%	30,7%	100%
alg #1	57,3%	12%	30,7%	100%
alg #2	40%	29,3%	30,7%	100%
B1	47,7%	31,3%	21%	100%
alg #1	56%	22,7%	21,3%	100%
alg #2	39,3%	40%	20,7%	100%

CEFR

levels

B2

acc

alg #1 60,7%

alg #1 55,3%

alg #1 61,3%

alg #2 61,3%

alg #2 52%

alg #2 56%

58,3%

53,7%

61,3%

unacc

18,7%

16,7%

20,7%

21%

19,3%

22,7%

21%

20%

22%

alg#1 outperforms alg #2 for levels A2, B1, B2

Possible reasons: - individual wellformedness is important for beginner (A2) and intermediate (B1, B2) levels

doubtful total

100%

100%

100%

100%

100%

100%

100%

100%

100%

23%

22,7%

23,3%

25,3%

25,3%

25,3%

17,7%

18,7%

16,7%

alg#1 and #2 perform almost equally for levels A1, C1, C2

Possible reasons:
- for advanced (C1)
and proficient (C2)
levels individual
well-formedness
is less important

<u>1 0331016 16430113</u> .
- for advanced (C1)
and proficient (C2)
levels individual
well-formedness
is less important

- at absolute

beginner level (A1) vocabulary is easy and frequent – hence good choice of easy well-formed examples

Evaluation. Qualitative data

User comments fall into 4 categories:

- 1. Comments/criticism of structural features, e.g. ellipsis, passive, limited context, word order, anaphora, pronouns, long phrase structure; lack of word class specific patterns
- 2. Lexical features: stricter word frequency filtering, proper names, acronyms and abbreviations, compounds, keyword repetition
- 3. Annotation: part-of-speech specific searches, e.g. exclude proper names when searching for nouns; some annotation errors
- 4. Heterogeneous: metaphoric use, abstract use, strange examples, etc.

Evaluation set-up 2

- •Examples (stored in a database):
 - •Three top examples per algorithm (i.e. 6 sentences per Kelly item)
 - •Information about algorithm not revealed to avoid bias
 - •Examples selected from a combination of corpora: SUC,
- Talbanken, LäsBarT, Parole, Fiction Prose, totaling at 44,3 mln. tokens)
- Same examples for each evaluator
- •Evaluators' input (stored in a database):
 - •In terms of "acceptable", "unacceptable", "doubtful" per each example;
 - Plus non-obligatory comments

Evaluation. User interface

Future

- 1. Algorithms improvement (based on results of the evaluation):
 - (for alg #1 and #2) additional parameters, e.g. voice, word order, proper names, pronouns, strength of collocation with contextual words, valency for verbs, word class specific approaches, vocabulary frequency;
 - (for alg #2) additional techniques: word sense discrimination (Purandare and Pedersen 2004)
- 2. Second evaluation set-up:
 - Parameter configuration customizable in terms of strength of "punishment" per parameter
- •Larger output set for better overview (esp. for alg.#2)
- Based on polysemous words (esp. for alg.#2)
- More specific study over different user group needs (L2 teachers, lexicographers, linguists)
- 3. Potential results:
- Suggest best parameter configuration per user group
- Set up web service for example rating
- Include web service into the present applications,
- e.g. Lärka, Korp, editing tool for Swedish FrameNet