
Demonstration Abstract: BNF Converter

Markus Forsberg and Aarne Ranta
Department of Computing Science

Chalmers University of Technology and the University of Gothenburg
SE-412 96 Gothenburg, Sweden
{markus, aarne}@cs.chalmers.se

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming

General Terms
Languages, Design

Keywords
Compiler Construction, Parser Generator, Grammar, BNF,
Abstract Syntax, Pretty Printer, Document Automation

Abstract
We will demonstrate BNFC (the BNF Converter) [7, 6], a
multi-lingual compiler tool. BNFC takes as its input a gram-
mar written in LBNF (Labelled BNF) notation, and gener-
ates a compiler front-end (an abstract syntax, a lexer, and a
parser). Furthermore, it generates a case skeleton usable as
the starting point of back-end construction, a pretty printer,
a test bench, and a LATEX document usable as language spec-
ification.

The program components can be generated in Haskell,
Java, C and C++ and their standard parser and lexer tools.
BNFC itself was written in Haskell.

The methodology used for the generated front-end is based
on Appel’s books on compiler construction [3, 1, 2]. BNFC
has been used as a teaching tool in compiler construction
courses at Chalmers. It has also been applied to research-
related programming language development, and in an in-
dustrial application producing a compiler for a telecommu-
nications protocol description language [4].

BNFC is freely available under the GPL license at its web-
site and in the testing distribution of Debian Linux.

1. DEMO OVERVIEW
The demo will consists of a brief explanation of the LBNF

source format, followed by instructions on how to compile
LBNF source format into a front-end in Haskell, Java, C,
and C++. The rest of the demonstration will consist of
explaining the generated code for Haskell.

2. GOALS AND LIMITS
The central goals of BNFC are

Copyright is held by the author/owner.
Haskell’04, September 22, 2004, Snowbird, Utah, USA.
ACM 1-58113-850-4/04/0009.

• to minimize the effort needed for compiler front-end
construction

• to encourage clean and simple language design

• to make front-end definitions independent of imple-
mentation language and thus portable

The LBNF grammar formalism can be learnt in a few
minutes by anyone who knows ordinary BNF. The main ad-
dition is that each grammar rule has a label, which is used
as a constructor of a syntax tree. No semantic actions other
than tree construction are allowed. Therefore the formal-
ism is declarative and portable, and a pretty-printer can
be derived from the same grammar as the parser. In addi-
tion to syntactic rules, LBNF provides a regular expression
notation for defining lexical structure, and some pragmatic
declarations defining features such as comments.

Since semantic actions are banned, BNFC can only de-
scribe languages that are context-free. The lexer must be
finite-state and neatly separated from the parser. Even
though these requirements are widely propagated in com-
piler text books, many real-world languages have features
that do not quite conform to them. However, practice has
shown that such problems can often be overcome by pre-
processing. For example, layout syntax can be handled in
BNFC by adding a processing level between the lexer and
the parser.

3. AN EXAMPLE GRAMMAR
We will now give a short example to give a taste of what

the language implementer has to supply, and what BNFC
generates. The example grammar is a subset of the Prolog,
known as pure Prolog.

Db . Database ::= [Clause] ;

Fact . Clause ::= Predicate ;
Rule . Clause ::= Predicate ":-" [Predicate] ;

APred . Predicate ::= Atom ;
CPred . Predicate ::= Atom "(" [Term] ")" ;

TAtom . Term ::= Atom ;
VarT . Term ::= Var ;
Complex . Term ::= Atom "(" [Term] ")" ;

terminator Clause "." ;

separator nonempty Predicate "," ;
separator nonempty Term "," ;

token Var ((upper | ’_’) (letter | digit | ’_’)*) ;
token Atom (lower (letter | digit | ’_’)*) ;

comment "%" ;

comment "/*" "*/" ;

The grammar shows a couple of things that go beyond the
basic idea of labelled BNF rules and regular expressions: a
special syntax [C] for polymorphic lists, to avoid cluttering
the AST:s with monomorphic lists, as well as shorthands
for defining the concrete syntax of a list in terms of its ter-
minator or separator. In addition, LBNF has a notion of
precedence levels expressed by integer indices attached to
nonterminals. A complete reference of the LBNF language
can be found on the BNFC website [6].

4. COMPILING A GRAMMAR
Assuming that the grammar of the previous section is

contained in a file named Prolog.cf, a Haskell front-end
is compiled by issuing the following command:

bnfc -m -haskell Prolog.cf

This command generates the following file:

• AbsProlog.hs: Algebraic datatypes for the AST:s

• LexProlog.x: Alex [5] lexer (v1.1 and v2.0)

• ParProlog.y: Happy [8] parser

• PrintProlog.hs: pretty printer

• SkelProlog.hs: AST traversal skeleton

• TestProlog.hs: test bench (a program that parses a
file and displays the AST and the pretty-printed pro-
gram)

• Makefile: an easy way to compile the test bench

• DocProlog.tex: language documentation in LATEX

For C and C++, similar files are generated but with slightly
different names. For Java, many more files are generated,
because the abstract syntax definition consists of separate
classes for each nonterminal and constructor, following the
methodology of Appel [2].

Depending on target language, the generated code is 10–
100 times the size of the LBNF source. Yet it isn’t hopelessly
ugly or low-level, but looks rather similar to hand-written
code that follows the chosen compiler writing discipline.

5. RELATED WORK
Cactus [9], uses an EBNF-like notation to generate front

ends in Haskell and C. Cactus is more powerful than BNFC,
which makes its notation more complex. Cactus does not
generate pretty printers and language documents.

The Zephyr language [10] is portable format for abstract
syntax translatable into SML, Haskell, C, C++, Java, and
SGML, together with functions for displaying syntax trees.
Zephyr does not support the definition of concrete syntax.

6. WHEN TO USE BNFC
BNFC has proved useful as a compiler teaching tool. It en-

courages clean language design and declarative definitions.
But it also lets the teacher spend more time on back-end
construction and/or the theory of parsing than traditional
compiler tools, which require learning tricky and compli-
cated notations.

BNFC also scales up to full-fledged language definitions.
Even though real-world languages already have compilers

generating machine code, it can be difficult to extract ab-
stract syntax from them. A BNFC-generated parser, case
skeleton, and pretty printer is a good starting point for pro-
grams doing some new kind of transformation or translation
on an existing language.

However, the clearest case for BNFC is the development
of new languages. It is easy to get started: just write a few
lines of LBNF, run bnfc, and apply the Makefile to cre-
ate a test bench. Adding or changing a language construct
is also easy, since changes only need to be done in one file.
When the language design is complete, the implementor per-
haps wants to change the implementation language; no work
is lost, since the front-end can be generated in a new tar-
get language, Finally, when the language implementation is
ready to be given to users, a reliable and human-readable
language definition is ready as well.

7. BIO SECTION
Markus Forsberg is an PhD student at the Swedish Grad-

uate School of Language Technology (GSLT) positioned at
the department of Computing Science at Chalmers Univer-
sity of Technology and the University of Gothenburg. Aarne
Ranta is an associative professor at the same department.

Forsberg and Ranta started the development of the BNF
Converter in 2002, as a tool generating Haskell. It was re-
targeted to C, C++, an Java in 2003 by Michael Pellauer
(at Chalmers). Later contributors are Björn Bringert, Peter
Gammie and Antti-Juhani Kaijanaho.

8. REFERENCES
[1] A. Appel. Modern Compiler Implementation in C.

Cambridge University Press, 1998.

[2] A. Appel. Modern Compiler Implementation in Java.
Cambridge University Press, 1998.

[3] A. Appel. Modern Compiler Implementation in ML.
Cambridge University Press, 1998.

[4] C. Däldborg and O. Noreklint. ASN.1 Compiler.
Master’s Thesis, Department of Computing Science,
Chalmers University of Technology, 2004.

[5] C. Dornan. Alex: a Lex for Haskell Programmers,
1997. http://www.cs.ucc.ie/dornan/alex.html.

[6] M. Forsberg, P. Gammie, M. Pellauer, and A. Ranta.
BNF Converter site. Program and documentation,
http://www.cs.chalmers.se/~markus/BNFC/, 2004.

[7] M. Forsberg and A. Ranta. Labelled BNF: a highlevel
formalism for defining well-behaved programming
languages. Proceedings of the Estonian Academy of

Sciences: Physics and Mathematics, 52:356–377, 2003.
Special issue on programming theory edited by J. Vain
and T. Uustalu.

[8] S. Marlow. Happy, The Parser Generator for Haskell,
2001. http://www.haskell.org/happy/.

[9] N. Martinsson. Cactus (Concrete- to Abstract-syntax
Conversion Tool with Userfriendly Syntax) . Master’s
Thesis in Computer Science, 2001.
http://www.mdstud.chalmers.se/~md6nm/cactus/.

[10] D. C. Wang, A. W. Appel, J. L. Korn, and C. S.
Serra. The Zephyr Abstract Syntax Description
Language. 1997. USENIX Association.

