
Functional Morphology

Markus Forsberg and Aarne Ranta
Department of Computing Science

Chalmers University of Technology and the University of Gothenburg

{markus, aarne}@cs.chalmers.se

Abstract

This paper presents a methodology for implementing natural lan-
guage morphology in the functional language Haskell. The main
idea behind is simple: instead of working with untyped regular ex-
pressions, which is the state of the art of morphology in computa-
tional linguistics, we use finite functions over hereditarily finite al-
gebraic datatypes. The definitions of these datatypes and functions
are the language-dependent part of the morphology. The language-
independent part consists of an untyped dictionary format which is
used for synthesis of word forms, and a decorated trie, which is
used for analysis.

Functional Morphology builds on ideas introduced by Huet in his
computational linguistics toolkit Zen, which he has used to imple-
ment the morphology of Sanskrit. The goal has been to make it easy
for linguists, who are not trained as functional programmers, to ap-
ply the ideas to new languages. As a proof of the productivity of the
method, morphologies for Swedish, Italian, Russian, Spanish, and
Latin have already been implemented using the library. The Latin
morphology is used as a running example in this article.

Categories and Subject Descriptors

D.1.1 [Programming Techniques]: Applicative (Functional) Pro-
gramming

General Terms

Languages, Design, Performance

Keywords

Morphological Description, Functional Programming, Linguistics,
Embedded Languages, Finite Functions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’04, September 19–21, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

1 Introduction

This paper presents a systematic way of developing natural lan-
guage morphologies in a functional language. We think of functions
and linguistic abstractions as strongly related in the sense that given
a linguistic abstraction, it is, in most cases, natural and elegant to
express it as a function. We feel that the methodology presented is
yet another proof of this view.

An implementation of the methodology is presented, named Func-
tional Morphology [8]. It can be viewed as an embedded domain-
specific language in Haskell. Its basis are two type classes: Param,
which formalizes the notion of a parameter type, and Dict, which
formalizes the notion of a part of speech as represented in a dic-
tionary. For these classes, Functional Morphology gives generic
Haskell functions for morphological analysis and synthesis, as well
as generation of code that presents the morphology in other formats,
including Xerox Finite State Tools and relational databases.

The outline of the paper is the following: The morphology task is
described in section 2, and then the contemporary approaches are
discussed in section 3. The main part of the paper, section 4, focuses
on describing the Functional Morphology library. We conclude in
sections 5 and 6 with some results and a discussion.

2 Morphology

A morphology is a systematic description of words in a natural lan-
guage. It describes a set of relations between words’ surface forms
and lexical forms. A word’s surface form is its graphical or spoken
form, and the lexical form is an analysis of the word into its lemma
(also known as its dictionary form) and its grammatical description.
This task is more precisely called inflectional morphology.

Yet another task, which is outside the scope of this paper, is deriva-
tional morphology, which describes how to construct new words in
a language.

A clarifying example is the English word functions’. The graphical
form functions’ corresponds to the surface form of the word. A pos-
sible lexical form for the word functions’ is function +N +Pl +Gen.
From the analysis it can be read that the word can be analyzed into
the lemma function, and the grammatical description noun, in plu-
ral, genitive case.

A morphological description has many applications, to mention a
few: machine translation, information retrieval, spelling and gram-
mar checking and language learning.

A morphology is a key component in machine translation, assum-
ing that the aim is something more sophisticated than string to string
translation. The grammatical properties of words are needed to han-
dle linguistic phenomena such as agreement. Consider, for exam-
ple, the subject-verb agreement in English — Colorless green ideas
sleep furiously, not *Colorless green ideas sleeps furiously.

In information retrieval, the use of a morphology is most easily ex-
plained through an example. Consider the case when you perform
a search in a text for the word car. In the search result, you would
also like to find information about cars and car’s, but no informa-
tion about carts and careers. A morphology is useful to do this kind
of distinctions.

3 Implementations of Morphology

3.1 Finite State Technology

The main contemporary approach within computational morphol-
ogy is finite state technology - the morphology is described with a
regular expression [17, 26, 18, 15] that is compiled to a finite state
transducer, using a finite state tool. Some of the tools available are:
the commercial tool XFST [29], developed at Xerox, van Noord’s
[28] finite state automata utilities, AT&T’s [19] FSM library and
Forsberg’s [6] FST Studio.

Finite state technology is a popular choice since finite state trans-
ducers provide a compact representation of the implemented mor-
phology, and the lookup time is close to constant in the size of the
lexicon.

Finite state technology is based on the notion of a regular relation.
A regular relation is a set of n-tuples of words. Regular languages
are a special case, with n = 1. Morphology tools such as XFST
work with 2-place relations. They come with an extended regu-
lar expression notation for easy manipulation of symbol and word
pairs. Such expressions are compiled into finite-state transducers,
which are like finite-state automata, but their arcs are labelled by
pairs of symbols rather than just symbols. Strings consisting of the
first components of these pairs are called the upper language of
the transducer, and strings consisting of the second components are
called the lower language. A transducer is typically used so that the
upper language contains structural descriptions of word forms and
the lower language contains the forms themselves.

A trivial example of a regular relation is the description of the in-
flection of three English nouns in number. The code is XFST source
code, where the | is the union operator, and .x. is the cross product
of the strings. Concatenation is expressed by juxtaposition.

NOUN = "table" | "horse" | "cat"

INFL = NOUN .x. "Sg" | NOUN "s" .x. "Pl"

If a transducer is compiled from this regular relation, and applied
upward with the string "tables", it will return {"Pl"}. If the built
transducer is applied downward with the string "Sg", it will return
{"table", "horse", "cat"}.

One problem with finite-state tranducers is that cycles (correspond-
ing to Kleene stars in regular expressions), can appear anywhere in
them. This increases the complexity of compilation so that it can
be exponential. Compiling a morphological description to a trans-
ducer has been reported to last several days, and sometimes small

changes in the source code can make a huge difference. Another
problem is that transducers cannot generally be made deterministic
for sequences of symbols (they are of course deterministic for se-
quences of symbol pairs). This means that analysis and synthesis
can be worse than linear in the size of the input.

3.2 The Zen Linguistic Toolkit

Huet has used the functional language Caml to build a Sanskrit dic-
tionary and morphological analysis and synthesis. [12]. He has
generalized the ideas used for Sanskrit to a toolkit for computa-
tional linguistics, Zen [13]. The key idea is to exploit the expres-
sive power of a functional language to define a morphology on a
high level, higher than regular expressions. Such definitions are
moreover safe, in the sense that the type checker guarantees that all
words are defined correctly as required by the definitions of differ-
ent parts of speech.

The analysis of words in Zen is performed by using tries. A trie
is a special case of a finite-state automaton, which has no cycles.
As Huet points out, the extra power added by cycles is not needed
for the morphological description inside words, but, at most, be-
tween words. This extra power is needed in languages like Sanskrit
where word boundaries are not visible and adjacent words can af-
fect each other (this phenomenon is known as sandhi). It is also
needed in languages like Swedish where compound words can be
formed almost ad libitum, and words often have special forms used
in compounds. Compositions of tries, with cycles possible only on
word boundaries, have a much nicer computational behaviour than
full-scale transducers.

3.3 Grammatical Framework

The Grammatical Framework GF [25] is a special-purpose func-
tional language for defining grammars, including ones for natural
languages. One part of a grammar is a morphology, and therefore
GF has to be capable of defining morphology. In a sense, this is triv-
ial, since morphology requires strictly less expressive power than
syntax (regular languages as opposed to context-free languages and
beyond). At the same time, using a grammar formalism for mor-
phology is overkill, and may result in severely suboptimal imple-
mentations.

One way to see the Functional Morphology library described in this
paper is as a fragment of GF embedded in Haskell. The Param and
Dict classes correspond to constructs that are hard-wired in GF:
parameter types and linearization types, respectively. Given this
close correspondence, it is no wonder that it is very easy to gen-
erate GF code from a Functional Morphology description. On the
other hand, the way morphological analysis is implemented effi-
ciently using tries has later been adopted in GF, so that the argu-
ment on efficiency is no longer so important. Thus one can see
the morphology fragment of GF as an instance of the methodology
of Functional Morphology. However, complicated morphological
rules (such as stem-internal vowel changes) are easier to write in
Haskell than in GF, since Haskell provides more powerful list and
string processing than GF.

4 Functional morphology

4.1 Background

The goal of our work is to provide a freely available open-source
library that provides a high level of abstraction for defining natural
language morphologies. The examples used in this article are col-
lected from Latin morphology. Our Latin morphology is based on
the descriptions provided by [20, 5, 16, 2].

Our work is heavily influenced by Huet’s functional description of
Sanskrit [12] and his Zen Toolkit [13]. The analyzer provided by
Functional Morphology can be seen as a Haskell version of Huet’s
“reference implementation” in Caml. At the same time, we aim to
provide a language-independent high-level front-end to those tools
that makes it possible to define a morphology with modest training
in functional programming.

The idea of using an embedded language with a support for code
generation is related to Claessen’s hardware description language
Lava [4], which is compiled into VHDL. For the same reasons as
it is important for Lava to generate VHDL—the needs of the main
stream community—we generate regular expressions in the XFST
and LEXC formats.

Functional Morphology is based on an old idea, which has been
around for over 2000 years, that of inflection tables. An inflection
table captures an inflectional regularity in a language. A morphol-
ogy is a set of tables and a dictionary. A dictionary consists of
lemmas, or dictionary forms, tagged with pointers to tables.

An inflection table displaying the inflection of regular nouns in En-
glish, illustrated with the lemma function, is shown below.

Case
Number Nominative Genitive
Singular function function’s
Plural functions functions’

Different ways of describing morphologies were identified by
Hockett [9] in 1950’s. The view of a morphology as a set of in-
flection tables he calls word and paradigm. The paradigm is an
inflection table, and the word is an example word that represent a
group of words with the same inflection table.

In a sense, the research problem of describing inflectional mor-
phologies is already solved: how to fully describe a language’s
inflectional morphology in the languages we studied is already
known. But the are still problematic issues which are related to
the size of a typical morphology. A morphology covering a dictio-
nary of a language, if written out in full form lexicon format, can be
as large as 1-10 million words, each tagged with their grammatical
description.

The size of the morphology demands two things: first, we need an
efficient way of describing the words in the morphology, general-
ize as much as possible to minimize the effort of implementing the
morphology, and secondly, we need a compact representation of the
morphology that has an efficient lookup function.

4.2 Methodology

The methodology suggests that paradigms, i.e. inflection tables,
should be defined as finite functions over an enumerable, hered-

Analyzer

Synthesizer

Translators

Dictionary format

Functional Morphology
API

Morphology

Language
Language

IndependentDependent

Figure 1. Functional Morphology system overview

itarily finite, algebraic data type describing the parameters of the
paradigm. These functions are later translated to a dictionary,
which is a language-independent datastructure designed to support
analyzers, synthesizers, and generation of code in other formats
than Haskell.

All parameter types are instances of the Param class, which is an ex-
tension of the built-in Enum and Bounded class, to be able to define
enumerable, finite types over hierarchical data types.

Parts of speech are modelled by instances of the class Dict, which
automate the translation from a paradigm to the Dictionary type.

4.3 System overview

A Functional Morphology system consists of two parts, one lan-
guage dependent part, and one language independent part, illus-
trated in figure 1.

The language dependent part is what the morphology implementor
has to provide, and it consists of a type system, an inflection engine
and a dictionary. The type system gives all word classes and their
inflection and inherent parameters, and instances of the Param class
and the Dict class. The inflection machinery defines all valid in-
flection tables, i.e. all paradigms, as finite functions. The dictionary
lists all words in dictionary form with its paradigm in the language.

Defining the type system and the inflection machinery can be a de-
manding task, where you not only need to be knowledgeable about
the language in question, but also have to have some understanding
about functional programming. The libraries provided by Func-
tional Morphology simplifies this step.

However, when the general framework has been defined, which is
actually a new library built on top of ours, it is easy for a lexicog-
rapher to add new words, and this can be done with limited or no
knowledge about functional programming. The lexicographer does
not even have to be knowledgeable about the inner workings of a
morphology, it is sufficient that she knows the inflectional patterns
of words in the target language.

4.4 Technical details

4.4.1 Parameter types

In grammars, words are divided into classes according to similarity,
such as having similar inflection patterns, and where they can occur
and what role they play in a sentence. Examples of classes, the part
of speech, are nouns, verbs, adjectives and pronouns.

Words in a class are attributed with a set of parameters that can be

divided into two different kinds of categories: inflectional parame-
ters and inherent parameters.

Parameters are best explain with an example. Consider the Latin
noun causa (Eng. cause). It is inflected in number and case, i.e.
number and case are the inflectional parameters. It also has a gen-
der, which is an inherent parameter. The inflection of causa in plu-
ral nominative is causae, but it has feminine gender.

These parameters are described with the help of Haskell’s data
types. For example, to describe the parameters for Latin noun, the
types Gender, Case and Number are introduced.

data Gender = Feminine |
Masculine |
Neuter

deriving (Show,Eq,Enum,Ord,Bounded)

data Case = Nominative |
Genitive |
Dative |
Accusative |
Ablative |
Vocative

deriving (Show,Eq,Enum,Ord,Bounded)

data Number = Singular |
Plural

deriving (Show,Eq,Enum,Ord,Bounded)

The inflectional parameter types Case and Number are combined
into one type, NounForm, that describes all the inflection forms of a
noun. Note that Gender is not part of the inflection types, it is an
inherent parameter.

data NounForm = NounForm Number Case
deriving (Show,Eq)

The parameter types of a language are language-dependent. A class
Param for parameters has been defined, to make it possible to define
language independent methods, i.e. implement generic algorithms.

class (Eq a, Show a) ⇒ Param a where
values :: [a]
value :: Int → a
value0 :: a
prValue :: a → String
value n = values !! n
value0 = value 0
prValue = show

The most important method — the only one not defined by default
— is values, giving the complete list of all objects in a Param
type. The parameter types are, in a word, hereditarily finite data
types: not only enumerated types but also types whose constructors
have arguments of parameter types.

An instance of Param is easy to define for bounded enumerated
types by the function enum.

enum :: (Enum a, Bounded a) ⇒ [a]
enum = [minBound .. maxBound]

The parameters of Latin nouns are made an instance of Param by
the following definitions:

instance Param Gender where values = enum
instance Param Case where values = enum
instance Param Number where values = enum
instance Param NounForm where
values =
[NounForm n c | n <- values ,

c <- values]
prValue (NounForm n c) =
unwords $ [prValue n, prValue c]

The default definition for prValue has been redefined for
NounForm to remove the NounForm constructor. Usually, a more
sophisticated printing scheme is preferred, using a particular tag
set, i.e. adopting a standard for describing the parameters of words.

Latin nouns can now be defined as a finite function, from a Noun-
Form to a String. The choice of String as a return type will be
problematized in section 4.4.5 and another type, Str, will be intro-
duced.

type Noun = NounForm -> String

More generally, a finite function in Functional Morphology, is a
function f from a parameter type P to strings.

f :: P -> String

Note that the finite functions have a single argument. This is, how-
ever, not a limitation, because we can construct arbitrarily complex
single types with tuple-like constructors.

4.4.2 Type hierarchy

A naive way of describing a class of words is by using the cross
product of all parameters. This would in many languages lead to a
serious over-generation of cases that do not exist in the language.

An example is the Latin verbs, where the cross product of the inflec-
tion parameters generates 1260 forms (three persons, two numbers,
six tenses, seven moods and five cases1), but only 147 forms actu-
ally exist, which is just about a ninth of 1260.

This problem is easily avoided in a language like Haskell that has
algebraic data types, where data types are not only enumerated, but
also complex types with constructors that have type parameters as
arguments.

The type system for Latin verbs can be defined with the data types
below, that exactly describes the 147 forms that exist in Latin verb
conjugation:

data VerbForm =
Indicative Person Number Tense Voice |
Infinitive TenseI Voice |
ParticiplesFuture Voice |
ParticiplesPresent |
ParticiplesPerfect |
Subjunctive Person Number TenseS Voice |
ImperativePresent Number Voice |
ImperativeFutureActive Number PersonI |
ImperativeFuturePassiveSing PersonI |
ImperativeFuturePassivePl |
GerundGenitive |
GerundDative |

1The verb inflection in case only appears in the gerund and
supine mood, and only some of the six cases are possible.

GerundAcc |
GerundAbl |
SupineAcc |
SupineAblative

This representation gives a correct description of what forms exist,
and it is hence linguistically more satisfying than a cross-product of
features. The type system moreover enables a completeness check
to be performed.

4.4.3 Tables and finite functions

The concept of inflection tables corresponds intuitively, in a pro-
gramming language, to a list of pairs. Instead of using list of pairs,
a functional counterpart of a table — a finite function could be used,
i.e. a finite set of pairs defined as a function.

To illustrate the convenience with using finite functions instead of
tables, consider the inflection table of the Latin word rosa (Eng.
rose):

Singular Plural
Nominative rosa rosae
Vocative rosa rosae
Accusative rosam rosas
Genitive rosae rosarum
Dative rosae rosis
Ablative rosa rosis

The word has two inflection parameters, case and number, that, as
discussed in section 4.4.1, can be described in Haskell with alge-
braic data types.

data Case = Nominative | Vocative |
Accusative | Genitive |
Dative | Ablative

data Number = Singular | Plural
data NounForm = NounForm Case Number

The inflection table can be viewed as a list of pairs, where the
first component of a pair is an inflection parameter, and the sec-
ond component is an inflected word. The inflection table of rosa is
described, in the definition of rosa below, as a list of pairs.

rosa :: [(NounForm,String)]
rosa =
[
(NounForm Singular Nominative,"rosa"),
(NounForm Singular Vocative,"rosa"),
(NounForm Singular Accusative,"rosam"),
(NounForm Singular Genitive,"rosae"),
(NounForm Singular Dative,"rosae"),
(NounForm Singular Ablative,"rosa"),
(NounForm Plural Nominative,"rosae"),
(NounForm Plural Vocative,"rosae"),
(NounForm Plural Accusative,"rosas"),
(NounForm Plural Genitive,"rosarum"),
(NounForm Plural Dative,"rosis"),
(NounForm Plural Ablative,"rosis")

]

The type NounForm is finite, so instead of writing these kinds of
tables, we can write a finite function that describes this table more
compactly. We could even go a step further, and first define a func-
tion that describes all nouns that inflects in the same way as the
noun rosa, i.e. defining a paradigm.

rosaParadigm :: String → Noun
rosaParadigm rosa (NounForm n c) =
let rosae = rosa ++ "e"

rosis = init rosa ++ "is"
in
case n of
Singular → case c of

Accusative → rosa + "m"
Genitive → rosae
Dative → rosae
_ → rosa

Plural → case c of
Nominative → rosae
Vocative → rosae
Accusative → rosa ++ "s"
Genitive → rosa ++ "rum"
_ → rosis

It may seem that not much has been gained, except that the twelve
cases have been collapsed to nine, and we have achieved some shar-
ing of rosa and rosae.

However, the gain is clearer when defining the paradigm for dea
(Eng. goddess), that inflects in the same way, with the exception of
two case, plural dative and ablative.

dea :: Noun
dea nf =

case nf of
NounForm Plural Dative → dea
NounForm Plural Ablative → dea
_ → rosaParadigm dea nf

where dea = "dea"

Given the paradigm of rosa, rosaParadigm, we can describe the
inflection tables of other nouns in the same paradigm, such as causa
(Eng. cause) and barba (Eng. beard).

rosa, causa, barba :: Noun
rosa = rosaParadigm "rosa"
causa = rosaParadigm "causa"
barba = rosaParadigm "barba"

4.4.4 Turning a function into a table

The most important function of Functional Morphology is table,
that translates a finite function into a list of pairs. This is done
by ensuring that the parameter type is of the Param class, which
enables us to generate all forms with the class function values.

table :: Param a ⇒ (a → Str) → [(a,Str)]
table f = [(v, f v) | v ← values]

A function would only be good for generating forms, but with
table, the function can be compiled into lookup tables and further
to tries to perform analysis as well.

4.4.5 String values

The use of a single string for representing a word is too restricted,
because words can have free variation, i.e., that two or more words
have the same morphological meaning, but are spelled differently.
Yet another exception is missing forms, some inflection tables may
have missing cases.

Free variation exists in the Latin noun domus (Eng. home) in sin-
gular dative, domui or domo, in plural accusative, domus or domos,
and in plural genitive, domuum or domorum.

Missing forms appear in the Latin noun vis (Eng. violence, force), a
noun that is defective in linguistic terms.

Singular Plural
Nominative vis vires
Vocative - vires
Accusative vim vires
Genitive - virium
Dative - viribus
Ablative vi viribus

These two observations lead us to represent a word with the ab-
stract type Str, which is simply a list of strings. The empty list
corresponds to the missing case.

type Str = [String]

The Str type is kept abstract, to enable a change of the representa-
tion. The abstraction function is called strings.

strings :: [String] → Str
string = id

The normal case is singleton lists, and to avoid the increased com-
plexity of programming with lists of strings, we provide the mkStr
function, that promotes a String to a Str.

mkStr :: String → Str
mkStr = (:[])

The description of missing cases is handled with the constant
nonExist, which is defined as the empty list.

nonExist :: Str
nonExist = []

The inflection table of vis can be described with the function vis
below.

vis :: Noun
vis (NounForm n c) =

case n of
Singular → case c of

Nominative → mkStr $ vi ++ "s"
Accusative → mkStr $ vi ++ "m"
Ablative → mkStr vi
_ → nonExist

Plural → mkStr $
case c of
Genitive → vir ++ "ium"
Dative → viribus
Ablative → viribus
_ → vir ++ "es"

where vi = "vi"
vir = vi ++ "r"
viribus = vir ++ "ibus"

4.4.6 String operations

Functional Morphology provides a set of string operation functions
that captures common phenomena in word inflections. Some of
them are listed below to serve as examples.

The string operations cannot be quite complete, and a morphology
implementer typically has to write some functions of her own, re-
flecting the peculiarities of the target language. These new func-
tions can be supplied as an extended library, that will simplify the

implementation of a similar language. The goal is to make the li-
brary so complete that linguists with little knowledge of Haskell can
find it comfortable to write morphological rules without recourse to
full Haskell.

Here is a sample of string operations provided by the library.

The Haskell standard functions take and drop take and drop pre-
fixes of words. In morphology, it is much more common to consider
suffixes. So the library provides the following dual versions of the
standard functions:

tk :: Int → String → String
tk i s = take (max 0 (length s - i)) s

dp :: Int → String → String
dp i s = drop (max 0 (length s - i)) s

It is a common phenomenon that, if the last letter of a word and the
first letter of an ending coincide, then one of them is dropped.

(+?) :: String → String → String
s +? e = case (s,e) of

(_:_,c:cs) | last s == c → s ++ cs
_ → s ++ e

More generally, a suffix of a word may be dependent of the last
letter of its stem.

ifEndThen :: (Char → Bool) → String → String
→ String → String

ifEndThen cond s a b = case s of
: | cond (last s) → a
_ → b

A more language dependent function, but interesting because it is
difficult to define on this level of generality with a regular expres-
sion, is the umlaut phenomenon in German, i.e. the transformation
of a word’s stem vowel when inflected in plural.

findStemVowel :: String → (String, String, String)
findStemVowel sprick =

(reverse rps, reverse i, reverse kc)
where (kc, irps) = break isVowel $ reverse sprick

(i, rps) = span isVowel $ irps

umlaut :: String → String
umlaut man = m ++ mkUm a ++ n

where
(m,a,n) = findStemVowel man
mkUm v = case v of

"a" → "ä"
"o" → "ö"
"u" → "u"
"au" → "äu"
_ → v

The plural form of Baum, can be describe with the function baumPl.

baumPl :: String → String
baumPl baum = umlaut baum ++ "e"

Applying the function baumPl with the string "Baum" computes to
the correct plural form "Bäume".

Obviously, the function umlaut is a special case of a more gen-
eral vowel alternation function, that is present in many language,
for instance, in English in the thematic alternation of verbs such as
drink-drank-drunk:

vowAltern :: [(String,String)] → String → String
vowAltern alts man = m ++ a’ ++ n

where
(m,a,n) = findStemVowel man
a’ = maybe a id $ lookup a alts

A general lesson from vowel alternations is that words are not just
strings, but data structures such as tuples.2 If regular expressions
are used, these data structures have to be encoded as strings with
special characters used as delimiters, which can give rise to strange
errors since there is no type checking.

4.4.7 Exceptions

Exceptions are used to describe paradigms that are similar to an-
other paradigm, with the exception of one or more case. That is,
instead of defining a completely new paradigm, we use the old defi-
nition only marking what is different. This is not only linguistically
more satisfying, it saves a lot of work. Four different kinds of ex-
ceptions, excepts, missing, only and variants, are listed below.

The exception excepts, takes a finite function, or a paradigm in
other words, and list of exceptions, and forms a new finite function
with with exceptions included.

excepts :: Param a ⇒ (a → Str) → [(a,Str)] → (a → Str)
excepts f es p = maybe (f p) id $ lookup p es

The paradigm of dea defined in section 4.4.3 can be described with
the function dea using the exception excepts.

dea :: Noun
dea =
(rosaParadigm dea) ’excepts’

[(NounForm Plural c, dea) | c <- [Dative, Ablative]]
where dea = "dea"

The exception functions missing and only are used to express
missing cases in a table; missing enumerates the cases with miss-
ing forms, and only is used for highly defective words, where it is
easier to enumerate the cases that actually exists.

missing :: Param a ⇒ (a → Str) → [a] → (a → Str)
missing f as = excepts f [(a,nonExist) | a ← as]

only :: Param a ⇒ (a → Str) → [a] → (a → Str)
only f as = missing f [a | a ← values, notElem a as]

The paradigm of vis described in section 4.4.5, can be described
with the only exception and the paradigm of hostis (Eng. enemy).

vis :: Noun
vis =
(hostisParadigm "vis") ’missing’
[
NounForm Singular c | c <- [Vocative, Genitive, Dative]
]

An often occurring exception is additional variants, expressed with
the function variants. That is, that a word is in a particular
paradigm, but have more than one variant in one or more forms.

2E.g. in Arabic, triples of consonants are a natural way to repre-
sent the so-called roots of words.

variants :: Param a ⇒ (a → Str) → [(a,String)] →
(a → Str)

variants f es p =
maybe (f p) (reverse . (: f p)) $ lookup p es

4.4.8 Dictionary

The Dictionary type is the core of Functional Morphology, in the
sense that the morphology description denotes a Dictionary. The
Dictionary is a language-independent representation of a mor-
phology, that is chosen to make generation to other formats easy.

A Dictionary is a list of Entry, where an Entry corresponds to a
specific dictionary word.

type Dictionary = [Entry]

An Entry consists of the dictionary word, the part of speech (cat-
egory) symbol, a list of the inherent parameters, and the word’s,
lacking a better word, untyped inflection table.

type Dictionary = [Entry]
type Entry = (Dictionary_Word, Category,

[Inherent], Inflection_Table)
type Dictionary_Word = String
type Category = String
type Inherent = String
type Parameter = String
type Inflection_Table = [(Parameter,(Attr,Str))]

The Attr type and definitions containing this type concerns the
handling of composite forms, that will be explained later in section
4.6.

To be able to generate the Dictionary type automatically, a class
Dict has been defined. Only composite types, describing the inflec-
tion parameters of a part of speech, should normally be an instance
of the Dict class.

class Param a ⇒ Dict a where
dictword :: (a → Str) → String
category :: (a → Str) → String
defaultAttr :: (a → Str) → Attr
attrException :: (a → Str) → [(a,Attr)]
dictword f = concat $ take 1 $ f value0
category = const "Undefined"
defaultAttr = const atW
attrException = const []

Note that all class functions have a default definition, but usually we
have to at least give a definition of category, that gives the name of
the part of speech of a particular parameter type. It’s impossible to
give a reasonable default definition of category; it would require
that we have types as first class objects.

It may be surprising that category and defaultAttr are higher-
order functions. This is simply a type hack that forces the inference
of the correct class instance without the need to provide an object
of the type. Normally, the function argument is an inflection table
(cf. the definition of entryI below).

The most important function defined for types in Dict is entryI,
which, given a paradigm and a list of inherent features, creates an
Entry. However, most categories lack inherent features, so the
function entry is used in most cases, with an empty list of inherent
features.

entryI :: Dict a ⇒ (a → Str) → [Inherent] → Entry
entryI f ihs = (dictword f, category f, ihs, infTable f)

entry :: Dict a ⇒ (a → Str) → Entry
entry f = entryI f []

Returning to the noun example, NounForm can be defined as an
instance of the class Dict by giving a definition of the category
function.

instance Dict NounForm
where category _ = "Noun"

Given that NounForm is an instance of the Dict class, a function
noun can be defined, that translates a Noun into an dictionary entry,
including the inherent parameter Gender, and a function for every
gender.

noun :: Noun → Gender → Entry
noun n g = entryI n [prValue g]

masculine :: Noun → Entry
masculine n = noun n Masculine

feminine :: Noun → Entry
feminine n = noun n Feminine

neuter :: Noun → Entry
neuter n = Noun n Neuter

Finally, we can define a set of interface functions that translates a
dictionary word into a dictionary entry: d2servus (Eng. servant,
slave), d1puella (Eng. girl) and d2donum (Eng. gift, present).

d2servus :: String -> Entry
d2servus = masculine . decl2servus

d1puella :: String -> Entry
d1puella = feminine . decl1puella

d2donum :: String -> Entry
d2donum s = neuter . decl2donum

Given these interface function, a dictionary with words can be cre-
ated. Note that the function dictionary is an abstraction function
that is presently defined as id.

latinDict :: Dictionary
latinDict =
dictionary $
[
d2servus "servus",
d2servus "somnus",
d2servus "amicus",
d2servus "animus",
d2servus "campus",
d2servus "cantus",
d2servus "caseus",
d2servus "cervus",
d2donum "donum",
feminine $ (d1puella "dea") ‘excepts‘
[(NounForm Plural c,"dea") | c <- [Dative, Ablative]]

]

The dictionary above consists of 11 dictionary entries, which de-
fines a lexicon of 132 full form words. Note that when using excep-
tions, the use of interface functions has to be postponed. We could
define exceptions on the entry level, but we would then loose the
type safety.

Even more productive are the interface functions for Latin verbs.
Consider the dictionary latinVerbs below, that uses the interface
functions v1amare (Eng. to love) and v2habere (Eng. to have).

latinVerbs :: Dictionary
latinVerbs =
dictionary $
[
v1amare "amare",
v1amare "portare",
v1amare "demonstrare",
v1amare "laborare",
v2habere "monere",
v2habere "admonere",
v2habere "habere"
]

The dictionary latinVerbs consists of 7 dictionary entries, that
defines a lexicon of as many as 1029 full form words.

4.4.9 External dictionary

When a set of interface functions have been defined, we don’t want
to recompile the system every time we add a new regular word.
Instead, we define an external dictionary format, with a translation
function to the internal Dictionary. The syntax of the external
dictionary format is straightforward: just a listing of the words with
their paradigms. The first entries of the dictionary latinVerbs are
written

v1amare amare
v1amare portare
v1amare demonstrare
v1amare laborare

Notice that the external dictionary format is a very simple special-
purpose language implemented on top of the morphology of one
language. This is the only language that a person extending a lexi-
con needs to learn.

4.4.10 Code generation

The Dictionary format, described in section 4.4.8, has been de-
fined with generation in mind. It is usually easy to define a transla-
tion to another format. Let us look at an example of how the LEXC
source code is generated. The size of the function prLEXC, not the
details, is the interesting part. It is just 18 lines. The functions not
defined in the function, is part of Haskell’s standard Prelude or the
standard API of Functional Morphology.

prLEXC :: Dictionary → String
prLEXC = unlines . (["LEXICON Root",[]] ++) . (++ ["END",[]]) .

map (uncurry prLEXCRules) . classifyDict

prLEXCRules :: Ident → [Entry] → String
prLEXCRules cat entries =
unlines $ [[],"! category " ++ cat,[]] ++

(map (prEntry . noAttr) entries)
where

prEntry (stem,_,inhs,tbl) =
concat (map (prForm stem inhs) (existingForms tbl))
prForm stem inhs (a,b) =
unlines
[x ++ ":" ++ stem ++ prTags (a:inhs) ++ " # ;" | x <- b]

prTags ts =
concat
["+" ++ w | t <- ts, w <- words (prFlat t)]

altsLEXC cs =
unwords $ intersperse " # ;" [s | s <- cs]

Currently, the following formats are supported by Functional Mor-
phology.

Full form lexicon .A full form lexicon is a listing of all word
forms with their analyses, in alphabetical order, in the lexi-
con.

Inflection tables. Printer-quality tables typeset in LATEX

GF grammar source code. Translation to a Grammatical Frame-
work grammar.

XML. An XML[27] representation of the morphological lexicon.

XFST source code. Source code for a simple, non-cyclic trans-
ducer in the Xerox notation.

LEXC source code. Source code for LEXC format, a version of
XFST that is optimized for morphological descriptions.

Relational database. A database described with SQL source code.

Decorated tries. An analyzer for the morphology as a decorated
trie.

CGI. A web server for querying and updating the morphological
lexicon.3

4.5 Trie analyzer

The analyzer is a key component in a morphology system — to an-
alyze a word into its lemma and its grammatical description. Syn-
thesizers are also interesting, that is, given an analysis, produce the
word form. In a trivial sense, an analyzer already exists through the
XFST/LEXC formats, but Functional Morphology also provides its
own analyzer.

Decorated tries is currently used instead of transducers for analy-
sis in our implementation. Decorated tries can be considered as a
specialized version of one of the languages in a transducer, that is
deterministic with respect to that language, hence prefix-minimal.
If we have an undecorated trie, we can also achieve total minimal-
ity by sharing, as described by Huet [14]; full-scale transducers
can even achieve suffix sharing by using decorated edges. This ap-
proach has been used by Huet [12], when defining a morphology
for Sanskrit. The trie is size-optimized by using a symbol table for
the return value (the grammatical description).

4.6 Composite forms

Some natural languages have compound words — words composed
from other words. A typical example is the (outdated) German word
for a computer, Datenverarbeitungsanlage, composed from Daten,
Verarbeitung, and Anlage. If such words are uncommon, they can
be put to the lexicon, but if they are a core feature of the language
(as in German), this productivity must be described in the morphol-
ogy. Highly inspired by Huet’s glue function [14], we have solved
the problem by tagging all words with a special type Attr that is
just a code for how a word can be combined with other words. At
the analysis phase, the trie is iterated, and words are decomposed
according to these parameters.

The Attr type is simply a integer. Together with a set of constants

3In a previous version, a CGI morphology web server was gen-
erated. Meijer’s [21] CGI library was used, further modified by
Panne. There exists a prototype web server [7] for Swedish. How-
ever, the CGI implementation scaled up poorly, so it is no longer
generated. This is to be replaced by a SQL database and PHP.

atW, atP, atWP and atS, we can describe how a word can be com-
bined with another. The atW for stand-alone words, atP for words
that can only be a prefix of other words, atWP for words that can be
a stand-alone word and a prefix, and finally, atS, for words that can
only be a suffix of other words.

type Attr = Int

atW, atP, atWP, atS :: Attr
(atW, atP, atWP, atS) = (0,1,2,3)

As an example, we will describe how to add the productive question
particle ne in Latin, that can be added as a suffix to any word in
Latin, and has the interrogative meaning of a questioning the word.

We begin by defining a type for the particle, and instantiate it in
Param. The Invariant type expresses that the particle is not in-
flected.

data ParticleForm = ParticleForm Invariant
deriving (Show,Eq)

type Particle = ParticleForm -> Str

instance Param ParticleForm where
values = [ParticleForm p | p <- values]
prValue _ = "Invariant"

We continue by instantiating ParticleForm in Dict, where we
also give a definition for defaultAttr with atS, that expresses
that the words of this form can only appear as a suffix to another
word, not as a word on its own.

instance Dict ParticleForm
where category _ = "Particle"

defaultAttr _ = atS

We then define an interface function particle and add ne to our
dictionary.

makeParticle :: String -> Particle
makeParticle s _ = mkStr s

particle :: String -> Entry
particle = entry . makeParticle

dictLat :: Dictionary
dictLat = dictionary $

[
...
particle "ne"
]

Analyzing the word servumne, the questioning that the object in a
phrase is a slave or a servant, gives the following analysis in Func-
tional Morphology:

[<servumne>
Composite:
servus Noun - Singular Accusative - Masculine
| # ne Particle - Invariant -]

5 Results

The following morphologies have been implemented in Functional
Morphology: a Swedish inflection machinery and a lexicon of
15,000 words [8]; a Spanish inflection machinery + lexicon of
10,000 words [1]; major parts of the inflection machinery + lexicon

for Russian [3], Italian [24], and Latin [8]. Comprehensive inflec-
tion engines for Finnish and French have been written following the
same method but using GF as source language [23]

One interesting fact is that the Master students had very limited
knowledge of Haskell before they started their projects, but still
managed to produce competitive morphology implementations.

An interface between morphology and syntax, through the Gram-
matical Framework, exists. An implemented morphology can di-
rectly be used as a resource for a grammatical description.

The analyzer tags words with a speed of 2k-50k words/second (de-
pending on how much compound analysis is involved), a speed that
compares with finite state transducers. The analyzer is often com-
piled faster than XFST’s finite state transducers, because Kleene’s
star is disallowed within a word description.

6 Discussion

One way of viewing Functional Morphology is as a domain specific
embedded language [10, 11], with the functional programming lan-
guage Haskell [22] as host language.

There are a lot of features that make Haskell suitable as a host lan-
guage, to mention a few: a strong type system, polymorphism, class
system, and higher-order functions. Functional Morphology uses
all of the mentioned features.

One could wonder if the power and freedom provided by a general-
purpose programming language does not lead to problems, in terms
of errors and inconsistency. Functional Morphology avoids this by
requiring from the user that the definition denotes an object of a
given type, i.e. the user has full freedom to use the whole power
of Haskell as long as she respects the type system of Functional
Morphology.

Embedding a language into another may also lead to efficiency
issues — an embedded language cannot usually compete with a
DSL that has been optimized for the given problem domain. This
is avoided in Functional Morphology by generating other formats
which provide the efficiency needed.

A simple representation of the morphology in the core system has
been chosen, which enables easy generation of other formats. This
approach makes the framework more easily adaptable to future ap-
plications, which may require new formats. It also enforces the
single-source idea, i.e. a general single format is used that gener-
ates the formats of interest. A single source solves the problems of
maintainability and inconsistency.

Programming constructs and features available in a functional
framework make it is easier to capture generalizations that may
even transcend over different languages. It is no coincidence that
Spanish, French and Italian are among the languages we have im-
plemented: the languages’ morphology are relatively close, so some
of the type systems and function definitions could be reused.

We believe that we provide a higher level of abstraction than the
mainstream tools using regular relations, which results in a faster
development and easier adaption. Not only does the morphology
implementor have a nice and flexible framework to work within,
but she gets a lot for free through the translators, and will also profit
from further development of the system.

7 References

[1] I. Andersson and T. Söderberg. Spanish Morphol-
ogy – implemented in a functional programming lan-
guage. Master’s Thesis in Computational Linguistics, 2003.
http://www.cling.gu.se/theses/finished.html.

[2] C. E. Bennett. A Latin Grammar. Allyn and Bacon, Boston
and Chicago, 1913.

[3] L. Bogavac. Functional Morphology for Russian. Master’s
Thesis in Computing Science, 2004.

[4] K. Claessen. An Embedded Language Approach to Hardware
Description and Verification. PhD thesis, Chalmers Univer-
sity of Technology, 2000.

[5] E. Conrad. Latin grammar.
www.math.ohio-state.edu/˜econrad/lang/latin.html,
2004.

[6] M. Forsberg. Fststudio.
http://www.cs.chalmers.se/˜markus/fstStudio

[7] M. Forsberg and A. Ranta. Svenska ord.
http://www.cs.chalmers.se/˜markus/svenska, 2002.

[8] M. Forsberg and A. Ranta. Functional morphology.
http://www.cs.chalmers.se/˜markus/FM, 2004.

[9] C. F. Hockett. Two models of grammatical description. Word,
10:210–234, 1954.

[10] P. Hudak. Building domain-specific embedded languages.
ACM Computing Surveys, 28(4), 1996.

[11] P. Hudak. Modular domain specific languages and tools. In
P. Devanbu and J. Poulin, editors, Proceedings: Fifth Interna-
tional Conference on Software Reuse, pages 134–142. IEEE
Computer Society Press, 1998.

[12] G. Huet. Sanskrit site. Program and documentation,
http://pauillac.inria.fr/˜huet/SKT/, 2000.

[13] G. Huet. The Zen Computational Linguistics Toolkit.
http://pauillac.inria.fr/˜huet/, 2002.

[14] G. Huet. Transducers as lexicon morphisms,
phonemic segmentation by euphony analysis,
application to a sanskrit tagger. Available:
http://pauillac.inria.fr/˜huet/FREE/, 2003.

[15] L. K. Kenneth R. Beesley. Finite State Morphology. CSLI
Publications, United States, 2003.

[16] G. Klyve. Latin Grammar. Hodder & Stoughton Ltd., Lon-
don, 2002.

[17] K. Koskenniemi. Two-level morphology: a general computa-
tional model for word-form recognition and production. PhD
thesis, University of Helsinki, 1983.

[18] G. G. L. Karttunen, J-P Chanond and A. Schille. Regular
expressions for language engineering. Natural Language En-
gineering, 2:305–328, 1996.

[19] A. Labs-Research. At&t fsm library.
http://www.research.att.com/sw/tools/fsm/.

[20] J. Lambek. A mathematician looks at the latin conjugation.
Theoretical Linguistics, 1977.

[21] E. Meijer and J. van Dijk. Perl for swine: Cgi programming
in haskell. Proc. First Workshop on Functional Programming,
1996.

[22] S. Peyton Jones and J. Hughes. Report on the Programming
Language Haskell 98, a Non-strict, Purely Functional Lan-
guage. Available from http://www.haskell.org, February
1999.

[23] A. Ranta. Grammatical Framework Homepage, 2000–2004.
www.cs.chalmers.se/˜aarne/GF/.

[24] A. Ranta. 1+n representations of Italian morphology. Essays
dedicated to Jan von Plato on the occasion of his 50th birth-
day, http://www.valt.helsinki.fi/kfil/jvp50.htm,
2001.

[25] A. Ranta. Grammatical Framework: A Type-theoretical
Grammar Formalism. The Journal of Functional Program-
ming, 14(2):145–189, 2004.

[26] M. K. Ronald M. Kaplan. Regular Models of Phonologi-
cal Rule Systems. Computational lingustics, pages 331–380,
1994.

[27] The World Wide Web Consortium. Extensible Markup Lan-
guage (XML). http://www.w3.org/XML/, 2000.

[28] G. van Noord. Finite state automata utilities.
http://odur.let.rug.nl/˜vannoord/Fsa/

[29] Xerox. Xerox finite-state compiler.
http://www.xrce.xerox.com/competencies
/content-analysis/fsCompiler/.

