
Technical Report no. 2007-09

The Functional Morphology Library

Markus Forsberg

Department of Computing Science

Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, 2007

i

Technical Report in Computing Science at
Chalmers University of Technology and Göteborg University

Technical Report no. 2007-09
ISSN 1650-3023

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone + 46 (0)31-772 1000

Göteborg, Sweden, 2007

1 Introduction

This document contains the technical report of Functional Morphology (FM)
version 2.0. The aim of the text is to supply a detailed description on how
to use FM and to provide some insights into the implementation of FM.

FM is a library for programming lexical resources. It is not a new
linguistic formalism. It helps creating a lexical resource in a structured
and efficient way. It is also a compiler, able to translate a lexical resource,
defined in FM, into many other lexical resource formats, such as SQL or
XFST source code.

Note that to be able to fully benefit from this document, a basic knowl-
edge of the functional programming language Haskell is required.

2 FM Tutorial

This section presents a detailed walk-through of a fragment of a Latin mor-
phology implemented in FM. Even though the choice of Latin is arbitrary,
it works as a nice example for FM since it is a highly inflected language,
which fits perfectly with the word-and-paradigm model of FM.

2.1 Overview

An implementation of a lexical resource in FM consists of clearly distinct
components, which is naturally put into different Haskell modules. The
components, listed below with short explanations, will be presented one by
one in the following sections.

Type system The type system consists of inflectional, inherent and dic-
tionary types, i.e. the parameters of the lexical resource, defined with
algebraic data types.

Paradigm functions The paradigms of the lexical resource expressed as
finite functions over the algebraic data types.

Interface functions The paradigm functions are translated to interface
functions. An interface function connects a paradigm function to the
dictionary, which includes the production of the inflection table and
the addition of the inherent parameters.

Lexicon There are two kinds of lexicon for a lexicon resource, an internal
and an external one. We will see that even though it may be convenient
with internal lexica, there are reasons to only use external lexica.

1

Paradigm names The words in the external lexicon are annotated with
paradigm names. The paradigm name module connects these names
with interface functions.

Compound analysis (optional) If compound analysis is used, all word
forms are given an attribute that defines how they can be combined
with other words forms. The compound analysis function defines
which of the attribute sequences correspond to possible compounds.

Main module The main module puts everything together into a runtime
system.

2.2 Type System

The type system defines all inflectional and inherent parameters of the mor-
phology. The parameters are defined with algebraic data types. Inflectional
parameters, for example number and case, are parameters dictating how a
word is inflected. Inherent parameters are attributes associated to a word,
such as gender or subcategorization frame. Inherent parameters differ from
inflectional parameters in that inflectional parameters are associated to a
word form, but an inherent parameter is associated to the word — e.g. a
feminine noun is not inflected in feminine, it is feminine.

The use of algebraic data types instead of ordinary strings gives many
advantages. It gives a guarantee that the correct parameters are used for
a paradigm as long as the correct word class is chosen. Furthermore, it
is possible to define the types in such a way that only valid parameter
configurations are possible to construct. For example, the cross product of
the inflectional parameters of Latin verbs generates 1260 forms, but only
147 forms are existing — with algebraic types we can define a type system
which disallows the 1113 non-existing forms.

Furthermore, if incomplete pattern detection is activated in the Haskell
compiler, we can get information about missing cases. That is, if we forget to
define the word forms for some parameter configurations, then the compiler
will complain.

As an example, consider the Latin noun causa (Eng. ’cause’). It is in-
flected in number and case, i.e. number and case are the inflectional param-
eters. It also has one inherent parameter: gender. The inflection of causa
in plural nominative is causae, but it has a feminine gender.

The parameters of Latin nouns are described with the help of Haskell’s
data types. To describe them, we introduce the types: Gender, Case and
Number, given in Fig. 1. The deriving part is needed to ensure that the

2

data Gender = Feminine |

Masculine |

Neuter

deriving (Show,Eq,Enum,Ord,Bounded)

data Case = Nominative |

Genitive |

Dative |

Accusative |

Ablative |

Vocative

deriving (Show,Eq,Enum,Ord,Bounded)

data Number = Singular |

Plural

deriving (Show,Eq,Enum,Ord,Bounded)

Figure 1: Type system

type is finite and enumerable — it gives us a way to enumerate all objects
in a type.

The inflectional parameter types Case and Number are combined into
one dictionary type NounForm describing all inflection forms of a Latin noun.
Gender is not part of the dictionary type, since it is an inherent parameter.

data NounForm = NounForm Number Case

deriving (Show,Eq,Ord,Bounded)

The NounForm type is missing a deriving for the Enum class. This is be-
cause the current main Haskell compiler is unable to derive the enumeration
of a data type containing constructors with arguments. The reason for this
is obvious for arguments that are not Enum and Bounded, since there is no
obvious enumeration strategy in that case, but there is a natural strategy if
they are: simply enumerating a constructor’s arguments from left to right.

An important class in FM is Param, defined in General.hs. The most
important method — the only one not defined by default — is values. It
gives the complete list of the objects in a Param type. An instance of Param
is easy to define for bounded enumerated types with the function enum, using
the member functions of Enum (the list generator) and Bounded (minBound
and maxBound).

enum :: (Enum a, Bounded a) => [a]

3

enum = [minBound .. maxBound]

We continue by instantiating the parameters of the Latin nouns in the
class Param. The default definition for prValue has been redefined for
NounForm, to remove the NounForm constructor. Usually, a more sophis-
ticated printing scheme is preferred, using a particular tag set, i.e. adopting
to a standard for describing the types of a language.

instance Param Gender where values = enum

instance Param Case where values = enum

instance Param Number where values = enum

instance Param NounForm where

values =

[NounForm n c | n <- values ,

c <- values]

prValue (NounForm n c) =

unwords $ [prValue n, prValue c]

A paradigm of Latin nouns is defined as a finite function Noun, from a
NounForm to a Str; from a parameter configuration to a word form. The
type for word forms is actually a list of strings, instead of a single one. The
reason for this is to be able to describe missing word forms and word form
variants.

type Noun = NounForm -> Str

A Noun is translated to an inflection table by generating all NounForm
objects and applying them to the Noun. This is done by the function table.

table :: Param a => (a -> Str) -> [(a,Str)]

table f = [(a,f a) | a <- values]

Note that this function is polymorphic — the only restriction of a is that
it is an instance of the Param class.

2.3 String operations

FM provides a set of string operation functions capturing common phenom-
ena in word inflection. For a complete reference, see General.hs in the FM
API (see Sec. 15.1).

The set of string operations is by no means complete. An implementer
of a lexical resource typically writes new functions reflecting some specifics
of the target language. For example, if it is common in a language that

4

the second last letter is dropped while inflecting a word, it is reasonable
to write a function that does exactly that. These new functions can be
delivered as an extended library, which will simplify the implementation of
a similar language.

For example, among the string operations are the functions tk and dp,
similar to Haskell’s standard functions take and drop, but they focus on
suffixes instead of prefixes. tk takes all but the n last characters and dp

drops all but the last n characters.

tk :: Int -> String -> String

tk n s = take (max 0 (length s - n)) s

dp :: Int -> String -> String

dp n s = drop (max 0 (length s - n)) s

Yet another example is the operator (+?), which implements the com-
mon phenomenon: if the last letter of a word and the first letter of an ending
coincide, then one of them is dropped. An example of the usage is given in
the function mkCase, where the genitive case of Swedish nouns is formed by
adding an ’s’ to word forms, unless it does not already end in ’s’. In that
case, nothing is added.

(+?) :: String -> String -> String

s +? e = case (s,e) of

(_:_,c:cs) | last s == c -> s ++ cs

_ -> s ++ e

mkCase :: Case -> String -> String

mkCase c w = case c of

Nom -> w

Gen -> w +? "s"

The strings operations all share the property that they perform a small,
specific task. And more, that their definitions are compact and easily un-
derstood.

3 Paradigms as functions

Let us start by considering the first declension noun paradigm, illustrated
with the inflection table of the word rosa (Eng. ’rose’), in Fig. 2. The
concept of inflection tables corresponds intuitively to a list of pairs in a
programming language, but FM takes an indirect approach and uses finite

5

Singular Plural
Nominative rosa rosae
Vocative rosa rosae
Accusative rosam rosas
Genitive rosae rosarum
Dative rosae rosis
Ablative rosa rosis

Figure 2: The inflection table of rosa

functions, which is later translated to a list of pairs. The use of finite
functions has many advantages: it allows the use of higher-order functions,
e.g. see exceptions in Sec. 3.1; it allows us to divide the paradigm definitions
into sets of finite functions, each solving a specific task, which in the end
are combined into one function with function compositions; and it allows
the use of pattern matching, which permits common cases to be defined
simultaneously.

The paradigm function for the first declension paradigm, decl1, is di-
rectly defined based on the inflection table. It is defined as a single function.

decl1rosa :: String -> Noun

decl1rosa rosa (NounForm n c) =

mkStr $

case n of

Singular ->

case c of

Accusative -> rosa ++ "m"

Genitive -> rosa ++ "e"

Dative -> rosa ++ "e"

_ -> rosa

Plural ->

case c of

Nominative -> rosa ++ "e"

Vocative -> rosa ++ "e"

Accusative -> rosa ++ "s"

Genitive -> rosa ++ "rum"

_ -> rosa ++ "is"

Note that the paradigm function requires one argument, a citation word
form. The functions rosa and puella are two nouns created by the appli-
cation of the citation forms "rosa" and "puella" (Eng. ’girl’).

rosa :: Noun

6

rosa = decl1 "rosa"

puella :: Noun

puella = decl1 "puella"

3.1 Exceptions

Many paradigms of the same type are similar, just differing in one or two
word forms. When defining a class of similar paradigms, its is convenient
to use FM:s exceptions. Exceptions are used to describe inflection functions
in terms of other inflection functions. Instead of defining a completely new
paradigm, we use the old definition and only mark what is different. This
is not only linguistically more satisfying, it saves a lot of work.

There are four different kinds of exception: excepts, missing, only

and variants. All exceptions are higher-order functions that take a finite
inflection function as an argument.

The exceptions except and excepts, take a finite inflection function and
list of exceptions, and constructs a new finite function with the exceptions
included. An example of its usage is given in the definition of decl2gladius.

except :: Param a => (a -> Str) -> [(a,String)] -> (a -> Str)

excepts :: Param a => (a -> Str) -> [(a,Str)] -> (a -> Str)

decl2gladius :: String -> Noun

decl2gladius gladius =

except (decl2servus gladius)

[(NounForm Singular Genitive, gladi),

(NounForm Singular Vocative, gladi)]

where gladi = tk 2 gladius

The exception functions missing and only are used to express missing
cases in a table. missing enumerates the cases with missing forms, and
only, used for highly defective words, enumerates the cases that exists. An
example is the paradigm of vis (Eng. ’force’), which inflects in the same
manner as hostis (Eng. ’enemy’), with the exception that it is missing the
singular vocative, genitive and dative case.

missing :: Param a => (a -> Str) -> [a] -> (a -> Str)

only :: Param a => (a -> Str) -> [a] -> (a -> Str)

vis_paradigm :: String -> Noun

vis_paradigm s = (hostisParadigm s) ’missing’

[NounForm Singular c | c <- [Vocative, Genitive, Dative]]

7

A very common exception is additional variants, i.e. that two paradigms
differ only in the number of word forms for one or more parameter configu-
ration. This type of exception is expressed with the functions variant and
variants.

An example is given with the function decl3parti, a Swedish paradigm
function. The function is defined in terms of a worst-case function mkNoun,
which takes Strings as arguments. This function is then augmented with
two variant word forms through the use of variant.

variant :: Param a => (a -> Str) -> [(a,String)] -> (a -> Str)

variants :: Param a => (a -> Str) -> [(a,Str)] -> (a -> Str)

decl3parti :: String -> Substantive

decl3parti parti =

mkNoun parti (parti ++ "et") (parti ++ "er") (parti ++ "erna")

‘variant‘

[(SF Sg Def c, mkCase c (parti++"t") | c <- values]

Note that we use values to generate the values of c. The type system
is able to infer that c is of type Case, and since Case is an instance of the
class Param, we can use the function values to generate the constructors
Nom and Gen.

4 Interface Functions

A lexical resource has its own type system, so to be able to use generic trans-
lations, we need to translate it into an intermediary format, a Dictionary.
A Dictionary is an untyped ADT consisting of a list of Entry:s. An Entry

corresponds to dictionary entry, specifying information about a word, e.g.
the inflection table and the inherent parameters.

The translation is done by first instantiating the dictionary types in
the Dict class, defined in Dictionary.hs (see Sec. 15.2). Typically, the
only information we need to supply is the name of the word class that the
dictionary type represents. Note that since we have no access to the names
of the types within Haskell, we must require that this information is supplied
by the user.

Let us return to the Latin noun example with the dictionary type NounForm.
When the NounForm type is made an instance of Dict, we also give the name
of the word class that NounForm represents, i.e. Noun.

instance Dict NounForm where

category _ = "Noun"

8

The next step is to define interface functions, i.e. functions that create
Entry:s. We start by a general interface function, noun, which transforms a
Noun together with its inherent parameter, Gender, and its paradigm iden-
tifier, to an Entry. The identifier is not the same as the paradigm names
in a command map (see Sec. 6), it is used in the word identifier. A word
identifier is built up from the citation form, the word class, the inherent
parameters and the identifier. For example, the word rosa has the identi-
fier rosa Noun Feminine n1. The main difference between the command
map identifiers and the ones in the word identifiers is that command map
identifiers must be unique.

We also define a function for every gender: masculine, feminine and
neuter.

noun :: Noun -> Gender -> Paradigm -> Entry

noun n g p = entryIP n [prValue g] p

feminine :: Noun -> Paradigm -> Entry

feminine n = noun n Feminine

masculine :: Noun -> Paradigm -> Entry

masculine n = noun n Masculine

neuter :: Noun -> Paradigm -> Entry

neuter n = noun n Neuter

We can now define interface functions for all our paradigm functions.
Let us have a look at three interface functions, one for each gender: d1rosa
(Eng. ’rose’), d2servus (Eng. ’servant’), and d2bellum (Eng. ’war’).

d1rosa :: DictForm -> Entry

d1rosa w = feminine (decl1rosa w) "n1"

d2servus :: DictForm -> Entry

d2servus w = masculine (decl2servus w) "n2"

d2bellum :: DictForm -> Entry

d2bellum w = neuter (decl2bellum w) "n2"

We can now create a small lexicon with the interface functions we have
defined. The function dictionary is an abstraction function that creates a
Dictionary ADT from a list of Entry:s.

latinDict :: Dictionary

9

latinDict =

dictionary $

[

d1rosa "puella",

d2servus "somnus",

d2servus "amicus",

d2bellum "donum"

]

The lexicon we just defined is referred to as an internal lexicon, since
it is defined within Haskell. If we add a new word, we need to recompile
our FM implementation, but on the other hand, we have the full power of
Haskell at our disposal. This is contrasted with an external lexicon, which is
simply a text file (discussed in Sec. 6). If we add a new word to the external
lexicon there is no need to recompile. We are, however, more restricted in
what we can express, since we no longer have access to Haskell.

In previous documentations of FM, we recommended that the irregularly
inflected words should be defined in the internal lexicon, and the regularly
ones in the external lexicon. We have reconsidered this somewhat, since it
is very convenient to have all words listed in the external lexicon — all in
the same place, in the same format. A definite preference, however, depends
on the intended usage of the lexical resource in question.

5 Compound Analysis

FM offers the possibility to perform compound analysis. By default, all
words are assumed to appear outside compounds, so the compound analysis
is invisible to someone who does not use it.

We will use the particle ne (Eng. approximately ’?’) as our example, a
clitic element that can be placed on any word, and by that, it expresses that
the word it attaches to is in some way questioned.

The first thing we need to do is to define attributes, which will be used
to describe the compound behaviour of ne. Attributes are integers greater
than one and we use the type Attr to refer to them.

For the purpose of our example, we will only define one attribute, atS,
which will be used for words that may only appear as a suffix on another
word form.

atS :: Attr

atS = 1

10

The next step is to associate the attribute to the dictionary type. This
is done in the instantiation of the class Dict, or more precisely, in the class
function defaultAttr.

instance Dict ParticleForm where

category _ = "Particle"

defaultAttr _ = atS

All words with the dictionary type ParticleForm now have the default
attribute atS. As the name defaultAttr implies, it is also possible to asso-
ciate an attribute value to any parameter configuration.

All word forms have an attribute associated to them. If no attribute
association has been defined for a word form, it receives the default attribute
value. The default attribute value is 0, which explains why a user-defined
attribute value must be larger than 0.

The compound analysis try to divide an input word form into all possible
sequences of word forms with their associated attributes. Some of these
sequences will, of course, not be valid. It is the compound function, defined
by the implementer of the lexical resource, which decides what attributes
are valid.

The compound function latin compound defines the valid attribute se-
quences of our Latin lexical resource.

latin_compound :: [Attr] -> Bool

latin_compound [x,y] = (x /= y) && atS == y

latin_compound [x] = x /= atS

latin_compound _ = False

Word forms with the attribute atS may only occur as suffixes. All other
word forms may only occur as single words.

6 Paradigm Identifiers and External Lexicon

We do not want to recompile the whole system every time we add a new
word, in fact, we may not want to recompile at all. This is where the external
lexicon comes into picture. An external lexicon is a text file containing a list
of citation forms marked with paradigm names. A paradigm name refers to
an interface function.

The first thing we need to do to get things working is to define a command
map. The command map defines the mapping between paradigm name and
interface functions. It consists of a list of triplets, where the first element

11

is the paradigm name, the second element is example citation forms for the
paradigm, and the third element is the interface function.

The interface functions are applied to a function app1 that requires a
special explanation. First of all, we want to be able to have interface func-
tions that have more than one argument. But then we have a problem,
since the type system of Haskell does not allow functions of different types
to appear at the same position in a list. The solution provided by FM is to
use one of a set of wrapper functions, named app1, app2, app3, et cetera,
where the number corresponds to the argument count. These wrapper func-
tions encapsulate the interface functions, creating new functions of the type
[String] -> Entry. Since all wrapper functions create a function of the
same type, we can have interface functions of different argument count ap-
pearing in the command list.

commands =

[

("d1puella", ["rosa"], app1 d1puella),

("d1puellaMasc", ["poeta"], app1 d1puellaMasc),

("d2servus", ["servus"], app1 d2servus),

("d2servusFem", ["pinus"], app1 d2servusFem),

("d2servusNeu", ["virus"], app1 d2servusNeu),

("d2bellum", ["bellum"], app1 d2bellum),

("d2puer", ["puer"], app1 d2puer),

("d2liber", ["liber"], app1 d2liber),

("prep", ["ad"], app1 prep),

("v1amare", ["amare"], app1 v1amare),

("v2habere", ["habere"], app1 v2habere)

]

Given that we have defined our command map (and our runtime system,
see Sec. 7), then we can start developing our external lexicon.

latin.lexicon:

v1amare amare

v1amare portare

v1amare demonstrare

v1amare laborare

The external lexicon is in a file latin.lexicon, where we have de-
fined four words in the first conjugation: amare (Eng. ’to love’), portare
(Eng. ’to carry’), demonstrare (Eng. ’to point out’), and laborare (Eng. ’to
work’). Note that the format of an external lexicon is simple — it consists
of paradigm names and citation forms. Single line comments are allowed,
triggered by --, but besides that, there is nothing more.

12

7 Runtime System

The last thing we need to do is to connect our lexical resource with the
runtime system of FM. For this, FM uses a class Language, defined in
Frontend.hs (see Sec. 15.4), which gives the language-specific parts of the
runtime system. We start by defining a type consisting of a single construc-
tor, which is the default name of our lexical resource.

data Latin = Latin

deriving Show

Next, we make our data type an instance of of the Language class, where
we define functions needed for the runtime system. All class functions have
a default definition, e.g. the internal dictionary may be empty; the list of
commands may be empty; or there may be no compound analysis. In this
instance, we define our internal dictionary, our compound function, and our
command map, which is folded into a more efficient lookup table.

instance Language Latin where

internDict _ = latinDict

composition _ = latin_compound

paradigms _ = foldr insertCommand emptyC commands

We can now define our main function with the help of the FM library
commonMain applied to our constructor Latin.

main :: IO ()

main = commonMain Latin

The constructor Latin is used to retrieve the information provided in
the instance of the Language class. It is a convenient way to avoid having
many optional arguments in the commonMain function.

This concludes the FM tutorial — we have now defined a complete frag-
ment of a lexical resource for Latin. For information on how to compile FM,
see Sec. 10, and on how to run FM, see Sec. 11.

8 Extending the Translator

This section lists how to add a new output format called FORMAT. For addi-
tional help, have a look at how another format is defined.

1. Define a function in Print.hs:
prFORMAT :: Dictionary -> String

13

2. Define two functions in GeneralIO.hs:
writeFORMAT :: FilePath -> Dictionary -> IO()

outputFORMAT :: Dictionary -> IO()

These functions, responsible of writing the output of prFORMAT to
the file Filepath and standard output respectively, typically add an
header to the output.

3. In CommonMain.hs: add a new command-line flag (e.g. -format) and
document it in the help message help text.

9 Compound Analysis in FM

A compound in FM is a word w = w1w2...wn where dictionary(wi) and
valid(attr(w1)...attr(wn)). dictionary is a boolean function defining the
word forms of a language. attr is function that for every word form in the
dictionary assigns a set of parameter values. The parameter values defines
how the word forms can be composed with other words. valid is a boolean
function that accepts as input a list of sets of attribute values and gives as
result a boolean value that states if the sequence of attribute values is valid
or not.

The compound analysis of FM consists of two functions, unglue and
valid. The unglue function is a rewritten version of Huet’s unglueing func-
tion [3], which splits an input word, based on a dictionary, into all possible
compounds. Note that it is essential to have the dictionary check in the gen-
erator, since the generator would otherwise be subject to a combinatorial
explosion.

unglue [] dictionary = [[]]

unglue w dictionary = [map (pre:) (unglue suf) |

(pre,suf) <- zip (prefixes w)

(suffixes w)

dictionary pre]

The valid function uses the compound function to filter out only the
valid compound.

valid c_fun cs = filter_valid attr_values

where

attr_values = flatten $ map lookup_attr cs

filter_valid [] = []

filter_valid (as:ass)

| c_fun (extract_attr as) = as : filter_valid ass

| otherwise = filter_valid ass

14

These two functions could be combined to avoid duplicate work, but
are held separate for the presentation. It may seem inefficient to separate
the validity test with the actual unglueing, but since Haskell is a lazy pro-
gramming language, the situation is better. The laziness ensures that the
unglueing process only continues on the suffix if the prefix is in the lexicon.

Since a word form may be a homograph, it can be associated with a
set of attributes. Because of this, we need to use the function flatten to
flatten the sequences of sets of attributes into a set of attribute sequences.

The function compound analysis puts everything together.

compound_analysis c_fun w =

concat $ map (valid c_fun) (unglue w)

Huet [3] uses a different approach to compounds: he uses rewrite rules
to describe internal and external sandhi of Sanskrit. The rules are compiled
into a dictionary trie with the addition of choice points, which encodes the
rules. The sandhi of Sanskrit is complicated since the spelling exactly reflects
the pronunciation of the sentences.

It is not clear that it would be possible to handle Sanskrit’s sandhi in
FM. It may be the case that the number of word forms would be to great
to be feasible to define in FM style.

The translation in FM of a lexical resource with compounding to other
systems is not complete — even though the compound information is ex-
ported, the compound function is missing. The compound function is cur-
rently a function in Haskell that is not readily translatable. The situation
could be improved by an algebraic representation of the compound function,
which in turn would be translatable. How such an algebraic representation
is best implemented requires some future work.

10 Compiling FM

The source code is downloadable at FM’s homepage1.
FM requires the GHC compiler2 to be built. Since FM is a command-line

program, it should work on all platforms supported by the GHC compiler.

1. Unpack the source code: tar -xvfz FM_LAT_v2.0.tgz

2. Change directory: cd ./FM_LAT_v2.0/

1http://www.cs.chalmers.se/∼markus/FM
2http://www.haskell.org/ghc

15

3. Compile FM: make

4. This produces a binary morpho lat

11 Running FM

We assume that the tutorial language is downloaded — the lexical resource
of Latin, and compiled in the manner described in Sec. 10. Other FM
implementations are handled in an analogous way.

Before FM implementation can be run, one needs to refer to the external
lexicon, latin.lexicon. This is done by either running the program in
the same directory as the external lexicon, or by pointing the environment
variable FM LAT to it. Environment variables are set differently depending
on which shell are in use, but in a Bash shell, and given that the lexicon file
is placed in the directory /home/dictionary, we would write the command
below. Or better, put the command in one of the system files declaring the
environment variables.

$ export FM_LAT="/home/dictionary/latin.lexicon"

The runtime system of an FM implementation consists of four parts: the
analyzer, the synthesizer, the inflection engine, and the translator. We will
describe each of these parts in the rest of this section. An overview of the
command-line flag of FM is printed with the help command morpho lat -h.
The output is given in Fig. 3.

11.1 The Analyzer

The analyzer, also referred to as the tagger, annotates the word forms of an
input text with information collected from the current lexical resource. The
analyzer is divided into two phases: word segmentation, or tokenization, and
word analysis. The word segmentation splits the string of the input text into
tokens, and the word analysis, which may be compound analysis, does the
actual annotation.

An example of the analyzer in action is given in Fig. 4, where two word
forms is being tagged: servi and servusne. The first word, servi, is the
inflection form of servus (Eng. ’servant’). It is ambiguous: it may be singular
genitive, plural nominative or plural vocative. The second word, servusne,
is a compound word consisting of servus and the question particle ne.

The part about Morphology Statistics contains information about the
lexical resource — here we see that 11 paradigms have been implemented;

16

|---------------------------------------|

| Program parameters |

|---------------------------------------|

| -h | Display this message |

|---------------------------------------|

| <None> | Enter tagger mode |

|---------------------------------------|

| -s | Enter interactive |

| | synthesiser mode |

|---------------------------------------|

| -i | Enter inflection |

| | mode |

|---------------------------------------|

| -lex [file] | Full form lexicon |

| -tables [file] | Tables |

| -gf [file] | GF source code |

| -latex [file] | LaTeX source code |

| -xml [file] | XML source code |

| -lexc [file] | LexC source code |

| -xfst [file] | XFST source code |

| -sql [file] | SQL source code |

|---------------------------------------|

Figure 3: FM help

the lexicon consists of 196 entries, 173 in the external lexicon and 23 in the
internal; these entries are expanded into 8131 word forms (yes, Latin is a
highly inflected language!) of which 5417 are unique. Finally, the compile
time for the dictionary and the building time of the analysis data structure
sums to 1.00 seconds.

FM is, of course, capable of analyzing a complete text. Given a Latin
text Latina Vulgate.txt, we analyze the whole text by simply piping the
text to the FM program, as illustrated below.

$ cat Latina_Vulgate.txt | morpho_lat

The analysis is reasonably fast. The analysis of ’Latina Vulgate’, con-
sisting of approximately 1.4 million word forms, took around 25 seconds on
a Macbook (including the compile time of the lexical resource), which gives
us an analysis speed in the ballpark of 56k word forms per second.

11.2 The Synthesizer

The synthesizer is used to retrieve all dictionary entries that include the
input word form in their inflection table. An example is provided in Fig. 5
with the word form puellae. In this example, we only got one entry, since

17

$ morpho_lat

* Functional Morphology v2.0 *

* (c) M. Forsberg & A. Ranta 2007 *

* under GNU General Public License. *

Morphology Statistics:

language id: latin

11 paradigms

0k entries (e: 173, i: 23)

8k word forms (c: 8131, u: 5417)

compile time: 1.00 seconds

servi

[<servi>

1. servus (servus_Noun_Masculine__n2:1)

Noun - Plural Vocative - Masculine [0]

2. servus (servus_Noun_Masculine__n2:1)

Noun - Plural Nominative - Masculine [0]

3. servus (servus_Noun_Masculine__n2:1)

Noun - Singular Genitive - Masculine [0]

]

servusne

[<servusne>

1. Composite: servus (servus_Noun_Masculine__n2:1) Noun -

Singular Nominative - Masculine [0] |

ne (ne_Particle__inv:1) Particle - Invariant [1]

]

Figure 4: FM analysis example

18

the word form puellae only appears in one entry. If it were an homograph,
on the other hand, appearing in more than one entry, then those entries
would be listed also.

The current version of FM does not include compound words in the
synthesizer: it only retrieves word forms that exists in the lexicon. How
to include compound words in the synthesis is by no means obvious — we
need a method to decide which word form in the compound that is the
main word form, to be able to select the correct word class and the correct
inherent parameters. And more, this method must be valid for any language,
and preferably invisible to an FM implementer that do not use compound
analysis.

A possible solution would be to strengthen the compound function so
that it would, as a result, not only give true or false, but also which attribute
corresponds to the main word form. Such an addition, however, would break
the backward compatibility of FM.

12 The Inflection Engine

The inflection engine of FM translates paradigm names applied to citation
word forms to dictionary entries. The inflection engine is also runnable in
batch mode, i.e. the input can be piped to the program. An example of the
inflection engine in interactive mode is given in Fig. 6, where the word porta
(Eng. ’door’) is marked as being in the first declension. The same result is
achieved in batch mode with the following command.

$ echo "d1rosa porta" | ./morpho_lat -ib

Typing ’c’ in interactive mode gives the list of all paradigm names
together with their example word forms.

13 The Translator

An important aspect of FM is its use as a compiler. The idea is that the
user of FM should never get ”stuck” in FM, but instead have the ability to
translate the lexical resource to many other lexicon formats, and by doing
that, maximize the usefulness of the resource. In fact, FM has been designed
so that adding a new format is a relatively small task (see Sec. 8 for details).

The formats currently supported by FM will now be exemplified one
by one. We will use the same example word, and only the part of the

19

$ morpho_lat -s

* Functional Morphology v2.0 *

* (c) M. Forsberg & A. Ranta 2007 *

* under GNU General Public License. *

Synthesiser mode

Enter a Latin word in any form

or a [paradigm name] with [word forms].

Type ’c’ to list paradigms.

Type ’q’ to quit.

Morphology Statistics:

language id: latin

11 paradigms

0k entries (e: 173, i: 23)

8k word forms (c: 8131, u: 5417)

compile time: 0.00 seconds

> puellae

[<puellae>

{

lemma: puella

pos: Noun

inherent(s): Feminine

paradigm id: n1

Singular Nominative : puella

Singular Vocative : puella

Singular Accusative : puellam

Singular Genitive : puellae

Singular Dative : puellae

Singular Ablative : puella

Plural Nominative : puellae

Plural Vocative : puellae

Plural Accusative : puellas

Plural Genitive : puellarum

Plural Dative : puellis

Plural Ablative : puellis

}

]

Figure 5: FM synthesis example

20

$ morpho_lat -i

* Functional Morphology v2.0 *

* (c) M. Forsberg & A. Ranta 2007 *

* under GNU General Public License. *

[Inflection mode]

Enter [paradigm name] with [word forms].

Type ’c’ to list paradigms.

Type ’q’ to quit.

> d1rosa porta

porta

Noun

Feminine

Singular Nominative: porta

Singular Vocative: porta

Singular Accusative: portam

Singular Genitive: portae

Singular Dative: portae

Singular Ablative: porta

Plural Nominative: portae

Plural Vocative: portae

Plural Accusative: portas

Plural Genitive: portarum

Plural Dative: portis

Plural Ablative: portis

>

Figure 6: FM inflection mode example

21

generation that refers to that word, to enable comparisons between the
different formats. The word used is filius (Eng. ’son’).

13.1 Full Form Lexicon

A fundamental format in FM is the full form lexicon, which is the format
that the analyzer builds on. The format consists of all word forms annotated
with their analyses (separated by ’:’).

filius:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Nominative - Masculine [0]

fili:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Vocative - Masculine [0]

filium:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Accusative - Masculine [0]

fili:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Genitive - Masculine [0]

filio:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Dative - Masculine [0]

filio:filius (filius_Noun_Masculine__n2:1) Noun -

Singular Ablative - Masculine [0]

filii:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Nominative - Masculine [0]

filii:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Vocative - Masculine [0]

filios:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Accusative - Masculine [0]

filiorum:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Genitive - Masculine [0]

filiis:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Dative - Masculine [0]

filiis:filius (filius_Noun_Masculine__n2:1) Noun -

Plural Ablative - Masculine [0]

13.2 Inflection Tables

Inflection tables can be generated in two formats, either as text or Latex
source code. The text version is given below.

$ morpho_lat -tables

filius

Noun

Masculine

22

Singular Nominative: filius

Singular Vocative: fili

Singular Accusative: filium

Singular Genitive: fili

Singular Dative: filio

Singular Ablative: filio

Plural Nominative: filii

Plural Vocative: filii

Plural Accusative: filios

Plural Genitive: filiorum

Plural Dative: filiis

Plural Ablative: filiis

The generation of tables in Latex source code enables us to create nicer,
formatted tables with the program latex.

$ morpho_lat -latex

filius, Noun Masculine

\begin{center}

\begin{tabular}{|l|l|}\hline

Singular Nominative & {\em filius} \\

Singular Vocative & {\em fili} \\

Singular Accusative & {\em filium} \\

Singular Genitive & {\em fili} \\

Singular Dative & {\em filio} \\

Singular Ablative & {\em filio} \\

Plural Nominative & {\em filii} \\

Plural Vocative & {\em filii} \\

Plural Accusative & {\em filios} \\

Plural Genitive & {\em filiorum} \\

Plural Dative & {\em filiis} \\

Plural Ablative & {\em filiis} \\

\hline

\end{tabular}

\end{center}

% \newpage

13.2.1 Grammatical framework (GF)

Grammatical Framework [4] is a multilingual grammar formalism, and be-
cause of the translation, we have a direct connection between a lexical re-
source and syntax, i.e. a GF grammar. GF also requires a type system, which
is not exported from FM. The type system, which should corresponds to the
type system of the FM implementation, must be in the file types.latin.gf.

23

We have actually cheated a bit with the generation — in our FM im-
plementation we used the possibility to have pretty-printed versions of our
types, through the function prValue in the class Param, where we have
removed the constructor NounForm. For the generation to be correct, we
needed to remove our prValue declarations, and recompile FM. It may be
reasonable to extend FM to support two kinds of Dictionary:s, one with the
pretty-printed types and one without, to avoid having to remove prValue

declarations prior to GF generation.

$ morpho_lat -gf

include types.latin.gf ;

cat Noun;

fun filius_1 : Noun ;

lin filius_1 = {s = table {

NounForm Singular Nominative => "filius" ;

NounForm Singular Vocative => "fili" ;

NounForm Singular Accusative => "filium" ;

NounForm Singular Genitive => "fili" ;

NounForm Singular Dative => "filio" ;

NounForm Singular Ablative => "filio" ;

NounForm Plural Nominative => "filii" ;

NounForm Plural Vocative => "filii" ;

NounForm Plural Accusative => "filios" ;

NounForm Plural Genitive => "filiorum" ;

NounForm Plural Dative => "filiis" ;

NounForm Plural Ablative => "filiis" };

h1 = Masculine

} ;

13.3 XML

The XML [5] format is a way of representing structured information in
ASCII. It is the most verbose format of FM, which is typical to an XML
representation. However, it is not as bad as it seems, since an XML file may
be heavily compressed.

$ morpho_lat -xml

<lexicon_entry>

<dictionary_form value="filius" />

24

<inherent value="Masculine" />

<inflection_table>

<inflection_form pos="Singular Nominative">

<variant word="filius" />

</inflection_form>

<inflection_form pos="Singular Vocative">

<variant word="fili" />

</inflection_form>

<inflection_form pos="Singular Accusative">

<variant word="filium" />

</inflection_form>

<inflection_form pos="Singular Genitive">

<variant word="fili" />

</inflection_form>

<inflection_form pos="Singular Dative">

<variant word="filio" />

</inflection_form>

<inflection_form pos="Singular Ablative">

<variant word="filio" />

</inflection_form>

<inflection_form pos="Plural Nominative">

<variant word="filii" />

</inflection_form>

<inflection_form pos="Plural Vocative">

<variant word="filii" />

</inflection_form>

<inflection_form pos="Plural Accusative">

<variant word="filios" />

</inflection_form>

<inflection_form pos="Plural Genitive">

<variant word="filiorum" />

</inflection_form>

<inflection_form pos="Plural Dative">

<variant word="filiis" />

</inflection_form>

<inflection_form pos="Plural Ablative">

<variant word="filiis" />

</inflection_form>

</inflection_table>

</lexicon_entry>

25

13.4 XFST

XFST [2] (Xerox Finite State Transducer) source code defines a regular
relation, i.e. a relation between two regular languages. A regular relation can
be compiled into a finite state transducer, which is an automaton providing
a compact and efficient structure for lexical resources. XFST source code is
compiled by the XFST tool.

$ morpho_lat -xfst

[{filius} %+Singular %+Nominative %+Masculine .x. {filius}] |

[{filius} %+Singular %+Vocative %+Masculine .x. {fili}] |

[{filius} %+Singular %+Accusative %+Masculine .x. {filium}] |

[{filius} %+Singular %+Genitive %+Masculine .x. {fili}] |

[{filius} %+Singular %+Dative %+Masculine .x. {filio}] |

[{filius} %+Singular %+Ablative %+Masculine .x. {filio}] |

[{filius} %+Plural %+Nominative %+Masculine .x. {filii}] |

[{filius} %+Plural %+Vocative %+Masculine .x. {filii}] |

[{filius} %+Plural %+Accusative %+Masculine .x. {filios}] |

[{filius} %+Plural %+Genitive %+Masculine .x. {filiorum}] |

[{filius} %+Plural %+Dative %+Masculine .x. {filiis}] |

[{filius} %+Plural %+Ablative %+Masculine .x. {filiis}]

13.5 LexC

LexC [2] source code is another, but more restricted, regular relation format
designed by Xerox. The restrictions of the format enable the XFST tool
to compile the regular relation to a finite state transducer faster and allow
better optimizations to be done on the resulting finite state transducer.

$ morpho_lat -lexc

filius:filius+Singular+Nominative+Masculine # ;

fili:filius+Singular+Vocative+Masculine # ;

filium:filius+Singular+Accusative+Masculine # ;

fili:filius+Singular+Genitive+Masculine # ;

filio:filius+Singular+Dative+Masculine # ;

filio:filius+Singular+Ablative+Masculine # ;

filii:filius+Plural+Nominative+Masculine # ;

filii:filius+Plural+Vocative+Masculine # ;

filios:filius+Plural+Accusative+Masculine # ;

filiorum:filius+Plural+Genitive+Masculine # ;

filiis:filius+Plural+Dative+Masculine # ;

filiis:filius+Plural+Ablative+Masculine # ;

26

13.6 SQL

SQL, Structured Query Language [1], is a popular source format for defining
databases. The first part of the generation creates a table LEXICON and
defines the types of the elements in the table. We use integers here instead
of word identifiers to identify words. The second part simply consists of
insertions of data into the table.

$ morpho_lat -sql

CREATE TABLE LEXICON

(

ID INTEGER NOT NULL,

DICTIONARY VARCHAR(50) NOT NULL,

CLASS VARCHAR(50) NOT NULL,

WORD VARCHAR(50) NOT NULL,

POS VARCHAR(50) NOT NULL);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filius’,’Singular Nominative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’fili’,’Singular Vocative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filium’,’Singular Accusative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’fili’,’Singular Genitive - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filio’,’Singular Dative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filio’,’Singular Ablative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filii’,’Plural Nominative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filii’,’Plural Vocative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filios’,’Plural Accusative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filiorum’,’Plural Genitive - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filiis’,’Plural Dative - Masculine’);

INSERT INTO LEXICON VALUES

(’2’,’filius’,’Noun’,’filiis’,’Plural Ablative -Masculine’);

27

14 Other Commands

14.1 Precompiled Dictionary

When we run FM we always rebuild our dictionary, and if it is large it may
take some time. However, if we are only going to use the analyzer, there is
a shortcut. A full form lexicon, i.e. a precompiled list of word forms, can be
read with the following command.

./morpho_lat -f latin.fullform

The file latin.fullform was generated with the full form generation of
FM, i.e. with the command morpho lat -lex.

14.2 Print Paradigms

The paradigms of FM are printed with the -p flag. The result is similar
to generating inflection tables, but with the crucial difference that every
paradigm is only printed once and only for those paradigms that have been
defined in the command map.

15 The Functional Morphology API

15.1 General.hs

The type for word forms. The type is a list to allow variants and missing
word forms.

newtype Str = Str [String]

The type for polymorphic inflection tables.

type Table a = [(a, Str)]

The type for finite inflection functions.

type Finite a = a -> Str

The class for finite parameters.

28

class (Eq a, Show a) => Param a where

values :: [a]

value :: Int -> a

value0 :: a

prValue :: a -> String

The type for token: W for normal tokens, P for symbols and D for digits.

data Tok = W String

| P String

| D String

The attribute type for compounds.

type Attr = Int

The default attribute value (0).

noComp :: Attr

Promotes String to Str.

mkStr :: String -> Str

Sharing of Str:s, achieved by the use of a global hash table.

shareStr :: Str -> Str

Translate a Str to [String].

unStr :: Str -> [String]

Promotes [String] to Str.

strings :: [String] -> Str

Apply function to a and promote the resulting String to Str.

mkStr1 :: (a -> String) -> a -> Str

Apply function to all variants in Str.

mapStr :: (String -> String) -> Str -> Str

29

The union of two Str.

unionStr :: Str -> Str -> Str

Prepend a string to all variants in Str.

(+*) :: String -> Str -> Str

Concatenation that marks the morpheme boundaries.

(+/) :: String -> String -> String

Variants listed in a string. Translated into a list of word by the function
words.

mkStrWords :: String -> Str

Takes all but Int characters in the end of the string.

tk :: Int -> String -> String

Drops all but Int character in the end of the string.

dp :: Int -> String -> String

Gets the Int:th character from the end of String.

ch :: Int -> String -> String

Prevents duplication, e.g. "mus" +? "s" = "mus".

(+?) :: String -> String -> String

Chooses suffix (second and third String) depending on the last letter of
the first String.

ifEndThen :: (Char -> Bool) -> String ->

String -> String -> String

Conditionally drops the last letter.

dropEndIf :: (Char -> Bool) -> String -> String

Apply substitution table to string.

30

changes :: [(String, String)] -> String -> String

Like changes, but applies only to the prefix.

changePref :: [(String, String)] -> String -> String

Single word form exception.

except :: Param a => Finite a -> [(a, String)] -> Finite a

Multiple word form exception.

excepts :: Param a => Finite a -> [(a, Str)] -> Finite a

Merge two paradigm functions.

combine :: Param a => Finite a -> Finite a -> Finite a

Missing forms exception.

missing :: Param a => Finite a -> [a] -> Finite a

Only exception, for highly degenerate paradigms.

only :: Param a => Finite a -> [a] -> Finite a

Single word form variant exception.

variant :: Param a => Finite a -> [(a, String)] -> Finite a

Multiple word form variants exception.

variants :: Param a => Finite a -> [(a, Str)] -> Finite a

Missing word form.

nonExist :: Str

Filters missing forms from inflection table.

existingForms :: Table a -> Table a

Translates a finite function to a table.

31

table :: Param a => (a -> Str) -> Table a

Used to define Param instances.

enum :: (Enum a, Bounded a) => [a]

A function with the same functionality as fromEnum, but for Param.

indexVal :: (Eq a, Param a) => a -> Int

Lookup in an inflection table.

appTable :: Param a => Table a -> a -> Str

Selects the first word form in an inflection table.

firstForm :: Param a => Table a -> Str

Creates a function from list of values (sensitive to order).

giveValues :: (Eq a, Param a) => [Str] -> a -> Str

Longest common prefix for a list of strings.

longestPrefix :: [String] -> String

Collects all word forms into a Str.

formsInTable :: Table a -> Str

Apply function to all word forms in table.

mapInTable :: (String -> String) -> Table a -> Table a

32

15.2 Dictionary.hs

An instance of the Dict class provides information on how to construct an
entry for a given dictionary type. In particular, it associates a word class
identifier to the dictionary type.

class Param a => Dict a where

dictword :: (a -> Str) -> String

category :: (a -> Str) -> String

defaultAttr :: (a -> Str) -> Attr

attrException :: (a -> Str) -> [(a, Attr)]

The type for dictionaries.

data Dictionary = D [Entry]

The type for a dictionary entry.

type Entry = (Dictionary_Word,

Paradigm,

Category,

[Inherent],

Inflection_Table,

Extra)

The type for paradigm identifiers.

type Paradigm = String

Transforms a typed table to an untyped.

prTable :: Param a => Table a -> Table String

Removes attributes and extra information from a dictionary.

removeAttr :: Dictionary -> [EntryN]

The type for full form lexica: a list of word forms together with their
analyses and compound attributes.

type FullFormLex = [(String, [(Attr, String)])]

33

Group a dictionary into categories; reverses the entries.

classifyDict :: Dictionary -> [(Category, [Entry])]

Removes attributes and extra information from Entry.

noAttr :: Entry -> EntryN

Translates an inflection function to an Entry.

entry :: Dict a => (a -> Str) -> Entry

Translates an inflection function with inherent information to an Entry.

entryI :: Dict a => (a -> Str) -> [Inherent] -> Entry

Translates an inflection function with extra information to an Entry.

entryWithInfo :: Dict a => (a -> (Str, Str)) -> Entry

Translates an inflection function with extra information and inherent
information to an Entry.

entryWithInfoI :: Dict a => (a -> (Str, Str)) ->

[Inherent] -> Entry

Translates an inflection function with paradigm identifier to an Entry.

entryP :: Dict a => (a -> Str) -> Paradigm -> Entry

Translates an inflection function with inherent information and paradigm
identifier to an Entry.

entryIP :: Dict a => (a -> Str) ->

[Inherent] -> Paradigm -> Entry

Translates an inflection function with extra information and paradigm
identifier to an Entry.

entryWithInfoP :: Dict a => (a -> (Str, Str)) ->

Paradigm -> Entry

34

Translates an inflection function with extra information, inherent infor-
mation, and paradigm identifier to an Entry.

entryWithInfoIP :: Dict a => (a -> (Str, Str)) ->

[Inherent] -> Paradigm -> Entry

An Entry without attributes and extra information.

type EntryN = (Dictionary_Word,

Category,

[Inherent],

[(Untyped, Str)])

Creates a Dictionary.

dictionary :: [Entry] -> Dictionary

Translate a Dictionary to a list of Entry:s.

unDict :: Dictionary -> [Entry]

The number of entries in a dictionary.

size :: Dictionary -> Int

The number of word forms in a dictionary.

sizeW :: Dictionary -> Int

Concatenates two dictionaries.

unionDictionary :: Dictionary -> Dictionary -> Dictionary

Concatenates a list of Dictionaries.

unionDictionaries :: [Dictionary] -> Dictionary

An empty Dictionary.

emptyDict :: Dictionary

Translates a Dictionary to a FullFormLex.

dict2fullform :: Dictionary -> FullFormLex

A full form lexicon structured around the word identifier.

dict2idlex :: Dictionary -> FullFormLex

Performs sharing on the strings in the Dictionary.

shareDictionary :: Dictionary -> Dictionary

35

15.3 Print.hs

Prints word forms in Str, separated with ’/’.

prStr :: Str -> String

Similar prStr, but outputs ’*’ for missing word forms.

prAlts :: Str -> String

Creates a constant table.

consTable :: Str -> Table String

Creates an attributed constant table.

consTableW :: Str -> [(String, (Attr, Str))]

Print a show:ed inflection function to standard output.

putFun0 :: Param a => (a -> Str) -> IO ()

Print an inflection function to standard output.

putFun :: Param a => (a -> Str) -> IO ()

Translate a show:ed parameter value to one without parenthesis.

prFlat :: String -> String

Shows all values for the first parameter.

prFirstForm :: Param a => Table a -> String

Shows one value for the first parameter.

prDictForm :: Param a => Table a -> String

Another Str printing function.

prDictStr :: Str -> String

Prints a dictionary, removing the attributes.

36

prDictionary :: Dictionary -> String

Prints a dictionary in a structured format.

prNewDictionary :: Dictionary -> String

Writes a full form lexicon to handle.

prFullFormLex :: Handle -> FullFormLex -> IO ()

Prints attribute to handle.

prCompAttr :: Handle -> Attr -> IO ()

Generates GF paradigm functions.

prGFRes :: Dictionary -> String

Prints GF source code.

prGF :: Dictionary -> String

Generates XML source code.

prXML :: Dictionary -> String

Prints LexC source code.

prLEXC :: Dictionary -> String

Prints XFST source code.

prXFST :: Dictionary -> String

Prints latex tables.

prLatex :: Dictionary -> String

Prints SQL Code.

prSQL :: Dictionary -> String

37

15.4 Frontend.hs

The runtime system class.

class Show a => Language a where

name :: a -> String

dbaseName :: a -> String

composition :: a -> [Attr] -> Bool

env :: a -> String

paradigms :: a -> Commands

internDict :: a -> Dictionary

tokenizer :: a -> String -> [Tok]

wordGuesser :: a -> String -> [String]

The type for command maps.

type Commands = Map String ([String], [String] -> Entry)

An empty command map.

emptyC :: Commands

Inserts a command into a set of commands.

insertCommand :: (String, [String], [String] -> Entry) ->

Commands -> Commands

Constructs a command map.

mkCommands :: [(String, [String], [String] -> Entry)] ->

Commands

Creates a dictionary from the list of paradigms.

command_paradigms :: Language a => a -> Dictionary

Parses commands.

parseCommand :: Language a => a -> String -> Err Entry

Lists paradigm names.

paradigmNames :: Language a => a -> [String]

38

The number of paradigms.

paradigmCount :: Language a => a -> Int

Reading external lexicon. Creates empty lexicon if the file does not exist.

parseDict :: Language a => a -> FilePath ->

IO (Dictionary, Int)

Is input string a paradigm name?

isParadigm :: Language a => a -> String -> Bool

Reads external lexicon.

readdict :: Language a => a -> FilePath ->

IO ([Entry], Int)

Removes comments in String.

remove_comment :: String -> String

Wrapper functions for the command map.

app1 :: (String -> Entry) -> [String] -> Entry

app2 :: (String -> String -> Entry) -> [String] -> Entry

app3 :: (String -> String -> String ->

Entry) -> [String] -> Entry

app4 :: (String -> String -> String ->

String -> Entry) -> [String] -> Entry

app5 :: (String -> String -> String -> String ->

String -> Entry) -> [String] -> Entry

app6 :: (String -> String -> String -> String ->

String -> String -> Entry) -> [String] -> Entry

app7 :: (String -> String -> String -> String ->

String -> String -> String -> Entry) ->

[String] -> Entry

Prints to stderr.

prErr :: String -> IO ()

39

15.5 GeneralIO.hs

Outputs UTF8-encoded string.

putStrLnUTF8 :: String -> IO ()

Writes source format to file.

writeLex :: FilePath -> Dictionary -> IO ()

writeTables :: FilePath -> Dictionary -> IO ()

writeGF :: FilePath -> FilePath -> Dictionary -> IO ()

writeGFRes :: FilePath -> FilePath -> Dictionary -> IO ()

writeXML :: FilePath -> Dictionary -> IO ()

writeXFST :: FilePath -> Dictionary -> IO ()

writeLEXC :: FilePath -> Dictionary -> IO ()

writeLatex :: FilePath -> Dictionary -> IO ()

writeSQL :: FilePath -> Dictionary -> IO ()

The analysis function.

analysis :: ([Attr] -> Bool) -> String -> [[String]]

Lookup identifiers for a word form.

lookupId :: String -> [String]

The synthesiser function.

synthesiser :: Language a => a -> IO ()

The inflection mode function.

infMode :: Language a => a -> IO ()

The batch inflection mode function.

imode :: Language a => a -> IO ()

40

15.6 CommonMain.hs

The ’main’ function of FM.

commonMain :: Language a => a -> IO ()

A type for statistics.

data Stats = Stats {totalWords :: Int,

coveredWords :: Int}

Empty statistics.

initStats :: Stats

15.7 CTrie.hs

Constructs a c-trie from a file containing a full form lexicon.

buildTrie :: FilePath -> Bool -> IO ()

Constructs a C-trie from a Dictionary ADT. Note that the trie is not
handled in Haskell, it’s a global object in C.

buildTrieDict :: Dictionary -> Bool -> IO ()

buildTrieDictSynt :: Dictionary -> Bool -> IO ()

Builds an undecorated trie.

buildTrieWordlist :: [String] -> Bool -> IO ()

trie_lookup :: String -> [(Attr, String)]

Is the string a member in the trie?

isInTrie :: String -> Bool

Function for compound analysis.

decompose :: ([Attr] -> Bool) -> String -> [[(Attr, String)]]

41

References

[1] ISO/IEC 9075 Information Technology–Database Languages–SQL. 1999.

[2] K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Publi-
cations, Stanford University, United States, 2003.

[3] G. Huet. A functional toolkit for morphological and phonological pro-
cessing, application to a Sanskrit tagger. J. Functional Programming,
15,4:573–614, 2005. http://yquem.inria.fr/∼huet/PUBLIC/tagger.

pdf.

[4] A. Ranta. Grammatical Framework: A Type-theoretical Grammar For-
malism. The Journal of Functional Programming, 14(2):145–189, 2004.

[5] The World Wide Web Consortium. Extensible Markup Language
(XML). http://www.w3.org/XML/, 2000.

42

