
Functional Pronunciation Dictionaries

Markus Forsberg

Department of Computing Science

Chalmers University of Technology and the University of Gothenburg

SE-412 96 Gothenburg, Sweden

markus@cs.chalmers.se

September 2, 2007

1 Introduction

This document describes the system Functional Pronunciation Dictio-

naries (FPD), a language-independent system for defining pronunciation
lexicons. The starting point of this system is Functional Morphology (FM)
[3, 2], where we asked us the question — given that we already have defined
a lexical resource in FM, what would be an efficient approach to extending
the lexicon with high-quality pronunciation information?

We will use Swedish to illustrate the ideas of FPD.
The main idea of FPD is based on the assumption that we can get

high correctness by using automatic transcription, and if a transcription is
erroneous, it is normally not completely wrong — it may be one or two
sounds that are incorrect. Given that this assumption is true, then auto-
matic transcription is a reasonable approach as the first step in the creation
of a high-quality pronunciation dictionary. The lexicographer’s job would
be to adjust the incorrect transcriptions.

M. Uneson [8] reports a precision of 95.7% in his automatic transcription
system of Swedish, i.e. approximately every twentieth word is transcribed
wrongly. Uneson gives a list of the most problematic cases: compounds;
lexical stress; lexical word accent; loan words; pronunciation that is not
derivable by orthography; occasional exceptions to normal orthographical
markings. Moreover, he reports that the main problem is compound resolu-
tion (the compound boundaries are unmarked in Swedish). The compound
resolution is, of course, connected to the problem of assigning the lexical
stress.

1

Learning from Uneson’s experiences, we only allow non-compound in our
lexicon and the pronunciation of compounds are instead resolved in FM:s
compound analysis.

Even though we are describing how the automatic transcription can be
done by manual rules within FPD, we could just as well plug in an external
transcription system, such as Uneson’s transcription system.

2 Representation of pronunciation in FPD

The transcription of pronunciation has been standardized by International
Phonetic Alphabet [7, 1], abbreviated IPA. Before IPA was invented, all pho-
neticians invented their own description alphabet, and comparisons between
works were difficult, sometimes close to impossible.

A transcription can be accomplished on different levels of detail. The
transcription with least details are referred to as phonemic, indicated with
slants (/../). Phonetic transcription, indicated with brackets ([..]), are di-
vided into two types, narrow and broad, where broad, in contrast to narrow,
contains the correct phones but few diacritics.

In ordinary dictionaries, it is common to use a phonemic transcription
with symbols for vowel length (:), primary stress (") and secondary stress (�),
and diacritics for syllabic consonants, i.e. a consonant that form a syllable
by itself or acts as a nucleus in a syllable.

2.1 Algebraic Representation of IPA

We use an abstract representation of IPA, instead of using some concrete en-
coding scheme. The IPA alphabet is represented with an algebraic data type
in the programming language Haskell [6], the description language of FM.
The motivation for an abstract representation of the IPA alphabet, instead
of using a particular encoding (see Sec. 6 about encodings), is because most
encodings do not cover the whole IPA. Moreover, it is easier to generate an
encoding from an abstract representation than from another encoding.

The IPA type contains five constructors, corresponding to consonants
and vowels, with optional diacritics, primary and secondary stress, and un-
knowns. Unknowns are used to mark letter for which no analysis was possi-
ble. The reason for this could be that no mapping is yet defined, or that the
input letter is not in the alphabet of the target language. The definition of
consonants and vowels are faithful reflections of the IPA tables: consonants
are defined in terms of manner, place, voice, and quantity; and vowels in
terms of orientation, openness, roundness, and quantity.

2

data IPA = C Consonant [Diacritics] |

V Vowel [Diacritics] |

PrimaryStress |

SecondaryStress |

Unknown

data Consonant = CC (Manner,Place,Voice,Quantity) |

HookTopHeng

data Vowel = VC (Orientation,Openness,Roundness,Quantity)

data Diacritics = Voiceless | Voiced | ...

The normal use is to define a set of names for a subset of IPA, repre-
senting the sound set of the target language, here with four examples from
Swedish: the primary stress marker ", the consonant b, the vowel A:, and
the retroflexed consonant ã.

stress :: IPA

stress = PrimaryStress

b :: IPA

b = consonant (Plosive,Bilabial,Voiced,Short) []

aa :: IPA

aa = vowel (Front,Open,UnRounded,Long) []

rd :: IPA

rd = consonant (Plosive,Retroflex,Voiced,Short) []

Transcription of the Swedish word bard (Eng. ’bard’) would be the
Haskell list [stress,b,aa,rd] corresponding to ["bA:ã].

3 Automatic transcription of Swedish in FPD

We will now present an example on how an automatic transcription of
Swedish may look like FPD. The goal is to illustrate the method, not to
present the best transcription strategy.

Our starting point is an input non-compound word that has its stem
marked. The first step is stress marking, where special symbols are inserted,
representing primary and secondary stress. This step is much simpler than
assigning stress to an arbitrary Swedish word, since we know where the stem
is, and moreover, that it is not an compound.

3

Letter Pronunciation Letter Pronunciation
a A b b
c s d d
e e f f
g g h h
i i j j
k k l l
m m n n
o u p p
q k0 r r
s s t t
u 0 v v
x ks y y
z s å o
ä E ö ø

Figure 1: Letter-to-pronunciation table

The next step is a naive letter-to-pronunciation translation, i.e. a map-
ping of every Swedish letter to a pronunciation, illustrated in Fig. 3.

The letter-to-pronunciation translation is done by a function letter to ipa,
easily derivable from the table in Fig. 3. The result of the function is a list
of InterIPA. An InterIPA is a pair of a String, which is the sequence of
letters corresponding to the pronunciation, and an IPA, the algebraic repre-
sentation of the pronunciation.

type InterIPA = (String,IPA)

letter_to_ipa :: String -> [InterIPA]

To improve the result, stepwise refinements are applied to the basic tran-
scription. In Sec. 3.1 to Sec. 3.8, we present a couple of rules, ordered as they
are applied. The rules have been derived from the description of Swedish
phonology in Garlén’s book [5].

A transcription system external to FPD could, as well, be plugged into
letter to ipa. The work required is the translation of the output of the
system into a list of InterIPA.

3.1 Detection of S

The rule maps every substring of the form sj and stj to S. Note that there
are many other substring that is also mappable to S, e.g. sk, sch and sh.

4

Here we use a helper function replace refine, which perform the ac-
tual mapping. We use functional composition (.) to sequentialize the re-
placement. Functional composition starts with the last element, i.e. the
refinement of sj, and goes backwards.

sje_refine :: [InterIPA] -> [InterIPA]

sje_refine = replace_refine ("stj",Sw.sj) .

replace_refine ("sj",Sw.sj)

3.2 Detection of ç

The rule maps every substring of the form tj and ch to ç. The rule is defined
in the same manner as sje refine.

3.3 Detection of @

The rule maps every occurrence of e to @, given the following conditions: it
occurs in a non-stressed final position, or it occurs in a non-stressed syllable
preceding either l or n.

schwa_refine :: [InterIPA] -> [InterIPA]

schwa_refine is = e_refine is False

where

e_refine [] _ = []

e_refine (c@("[",_):xs) _ = c : e_refine xs True

e_refine (c@("]",_):xs) _ = c : e_refine xs True

e_refine (c@("e",_):xs) stressed =

case xs of

[] | not stressed -> [("e",Sw.schwa)]

[("l",_)] | not stressed -> (("e",Sw.schwa):xs)

[("n",_)] | not stressed -> (("e",Sw.schwa):xs)

_ -> c:e_refine xs False

e_refine (x:xs) stressed

| stressed && sw_vowel x = x:e_refine xs False

| otherwise = x:e_refine xs stressed

3.4 Refinement of g

The rule maps every g to the sound j if it occurs in a stressed position before
a soft vowel (e, i, y, E, ø).

5

g_to_j_refine :: [InterIPA] -> [InterIPA]

g_to_j_refine is = j_refine is False

where

j_refine [] _ = []

j_refine (c@("[",_):xs) _ = c :j_refine xs True

j_refine (c@("]",_):xs) _ = c :j_refine xs True

j_refine (c@("g",_):c1:xs) stressed

| stressed && soft_wovel c1 = ("g",Sw.j):c1:xs

| otherwise = c:j_refine (c1:xs) stressed

j_refine (x:xs) stressed

| stressed && sw_vowel x = x:j_refine xs False

| otherwise = x:j_refine xs stressed

3.5 Refinement of ä and ö

The rule maps every occurrence of ä and ö preceding r to the sounds æ and
œ respectively, i.e. the vowels becomes more open in front of an r.

öä_refine :: [InterIPA] -> [InterIPA]

öä_refine [] = []

öä_refine (("ä",_):c@("r",_):xs) = ("ä",Sw.ä2):c:öä_refine xs

öä_refine (("ö",_):c@("r",_):xs) = ("ö",Sw.ö2):c:öä_refine xs

öä_refine (x:xs) = x:öä_refine xs

3.6 Double consonants

The rule locates and merges doubled consonant (and the letter combination
ck) to a single long consonant. The implementation is a simple traversal of
the input, where two helper functions are used: is consonant, which iden-
tifies a consonant, and change quantity, which is used to mark consonants
as long.

double_consonant_refine :: [InterIPA] -> [InterIPA]

double_consonant_refine [] = []

double_consonant_refine [c] = [c]

double_consonant_refine (("c",_):("k",_):xs) =

("ck",Sw.kk):double_consonant_refine xs

double_consonant_refine (c1@(s1,cons1):c2@(s2,cons2):xs)

| is_consonant cons1 && cons1 == cons2 =

(s1++s2,change_quantity Long cons1) : double_consonant_refine xs

| otherwise = c1 : double_consonant_refine (c2:xs)

6

Letter combination Pronunciation
rl í
rn ï
rt ú
rd ã
rs ù
ng N
gn N
lj j
hj j
gj j

Figure 2: Assimilation table

3.7 Assimilation

The rule performs assimilation, i.e. two sounds are melted into one. The
assimilation table is given in Fig. 3.7. Note that there are exceptions to this
transformation where no assimilation occurs, e.g. sälja (Eng. ’to sell’) and
tälja (Eng. ’to carve’). The function assimilation refine dealing with
the assimilation is defined in the same manner as sje refine.

3.8 Vowel quantity

The rule decides on the vowel quantity, where the default is a short vowel.
A vowel becomes long if it is stressed and it is followed by a short con-
sonant, or if it is stressed in a final position. Note that this rule requires
that we have performed the double consonants refinement. The function
vowel quantity refine may look a bit complicated, but what it does is
essentially just lexical stress book keeping.

vowel_quantity_refine :: [InterIPA] -> [InterIPA]

vowel_quantity_refine is = v_refine is False

where

v_refine [] _ = []

v_refine (c@("[",_):xs) _ = c : v_refine xs True

v_refine (c@("]",_):xs) _ = c : v_refine xs True

v_refine ([c1@(s1,v1)]) stressed

| stressed && is_vowel v1 = [(s1,toLongVowel s1 v1)]

| otherwise = [c1]

v_refine (c1@(s1,v1):c2@(_,cons1):xs) stressed

| stressed && is_vowel v1 &&

7

is_consonant cons1 && is_short cons1 =

(s1,toLongVowel s1 v1) : c2 : v_refine xs False

| is_vowel v1 = c1:v_refine (c2:xs) False

| otherwise = c1:v_refine (c2:xs) stressed

v_refine (c1:xs) stressed = c1:v_refine xs stressed

4 Paradigm description

The paradigm description of FPD is essentially the same as FM, with the
crucial difference that the stem is marked. However, this additional annota-
tion does not require any substantial work. Let us see how we could rewrite
the third declension function decl3, given below.

decl3 :: String -> Noun

decl3 sak = mkNoun sak (sak ++ "en") (sak ++ "er") (sak++"erna")

It is the variable sak that we want to be marked with stem annotations.
An easy way to do the marking, as done in decl3 marked, is to change the
input variable name to sak’, and define sak, as sak’ with stem annotations,
done with the helper function stem. It does not really matter how stem is
defined, as long as we are consistent, here we use curly braces for the stem
marking.

decl3_marked :: String -> Noun

decl3_marked sak’ = mkNoun sak (sak ++ "en") (sak ++ "er") (sak++"erna")

where sak = stem sak’

stem :: String -> String

stem s = "{" ++ s ++ "}"

5 A new dictionary language

The pronunciation adjustments are done in the lexicon of FPD. The words
that obtain the incorrect transcription are marked with a set of terms that
describes how the pronunciation should be adjusted. It is up to the devel-
oper to define a term language parser of the terms describing all possible
transformations.

8

〈Dict 〉 ::= 〈ListEntry 〉

〈Entry 〉 ::= 〈Ident 〉 〈ListString 〉 { 〈ListTerm 〉 }

〈Term 〉 ::= 〈Ident 〉 (〈ListTerm 〉)
| 〈Ident 〉
| 〈String 〉
| 〈Integer 〉

〈ListEntry 〉 ::= ǫ

| 〈Entry 〉 ; 〈ListEntry 〉

〈ListString 〉 ::= 〈String 〉
| 〈String 〉 〈ListString 〉

〈ListTerm 〉 ::= 〈Term 〉
| 〈Term 〉 , 〈ListTerm 〉

Figure 3: Dictionary language

An example on how the dictionary may look like is given here. The first
word, sol (Eng. ’sun’), is transcribed correctly, but the second word, kol

(Eng. ’coal’), is not. The term in the curly brackets describes that o in the
stem should be map to u.

d2 "sol" ;

d2 "kol" {aa_to_o(stem)} ;

This new language of lexicons is given in Fig. 5 in BNF notation. A
term is arbitrarily complex and may be built up from other terms, atoms,
integers and strings.

6 Encodings

There are many different encodings of the IPA table — some are for display-
ing transcriptions, such as TIPA [4], which is a package for LATEX, supporting
IPA fonts, and HTML Unicode. Moreover, some encodings are in ASCII, cre-
ated to simplify processing and editing on a computer, such as: ARPABET

1 & 2, developed by ARPA, and SAMPA, a language dependent1 encoding,
and X-SAMPA [9], a language independent encoding.

Adding a new encoding to FPD involves describing a mapping of the IPA
type to the target encoding. This mapping may differ a bit, depending on
how the encoding symbols are built up, but it is typically straight-forward.

1A language with SAMPA encoding has its own set of SAMPA characters that cover

the sounds of that language.

9

Here is an example of the translation of some consonants to TIPA. The quan-
tity part, which actually just adds a colon (:) to the end of the character,
is abstracted with the function prQuantity.

prConsonant :: Consonant -> String

prConsonant HookTopHeng = "\\texththeng"

prConsonant (C (manner,place,voice,quantity)) =

prQuantity quantity $

case (manner,place,voice) of

(Plosive,Bilabial,Unvoiced) -> "p"

(Plosive,Bilabial,Voiced) -> "b"

(Plosive,Alveolar,Unvoiced) -> "t"

(Plosive,Alveolar,Voiced) -> "d"

(Plosive,Retroflex,Unvoiced) -> "\\textrtailt"

(Plosive,Retroflex,Voiced) -> "\\textrtaild"

...

The encoding is not required to be complete, we just define those sounds
covered by the encoding, and maps all else to a dummy symbol. As long as
the transcription is within the encoding, everything is ok, and if it is outside
it, then the user will be notified by the occurring dummy symbol.

7 Dealing with Compounding

As mentioned previously, the pronunciation of compounds is done in the
compound analysis of FPD, i.e. if an input word is analyzed as a compound,
we adjust the lexical stress markers to match the pronunciation of Swedish
compounds. The rule of lexical stress of Swedish compounds is: the first

word of a Swedish compound word has a primary accent and the following

words has a secondary stress.
This rule is not without exceptions, e.g. the word Kolsvart (Eng. ’pitch

black’) has two primary accents: ["ko:l "svaú]. However, these exceptions are
so few that they can be treated with an exception list.

8 Changes in the FM implementation

The changes necessary are rather conservative:

• Extend the class Frontendwith five member functions: word annotations,
which removes all special symbols occurring in word forms; preprocess,
which adds symbols for stress and similar markings; transcription,

10

which performs the automatic transcription; term parser, which parses
the terms and performs the operations derived from them;
and compound pronunciation, dealing with the pronunciation of com-
pounds. All these functions may be defined as identity functions as
default, i.e. they are conservative additions to FM.

• Change the lexicon format — this would be a good thing for FM, since
the current lexicon format is rather primitive. The term language
should by no means be restricted for use in the transcription process,
instead it should be a general facility to add and adjust information.

• Extend the command language with flags for controlling the encodings
of the output transcription.

9 Final comments

This system aims at providing an answer to the question: given that we have
an automatic transcription system, then how do we systematically deal with
the exceptions without having to resort to an exceptions list where the whole
words are transcribed?

The automatic transcription described here is a part of a CGI applica-
tion2, and not yet fully implemented in FM. The details on the additions
necessary are presented in Sec. 8.

The major step is to perform an evaluation of Swedish transcription to
demonstrate the feasibility of the approach. For this we need a reference
material of good quality, but to my knowledge, there is no such source
publicly available3.

References

[1] I. P. Association, editor. Handbook of the International Phonetic Asso-

ciation. Cambridge University Press, Cambridge, UK, 1999.

[2] M. Forsberg and A. Ranta. Functional Morphology. Proceedings of the

Ninth ACM SIGPLAN International Conference of Functional Program-

ming, Snowbird, Utah, pages 213–223, 2004.

2Available at: http://www.cs.chalmers.se∼/markus/transcription
3The reference material used by M. Uneson, Hedelin’s pronunciation lexicon, is not

publicly available.

11

[3] M. Forsberg and A. Ranta. Functional morphology. http://www.cs.

chalmers.se/∼markus/FM, 2007.

[4] R. Fuki. TIPA Manual Version 1.3. Graduate School of Humanities and

Sociology, The University of Tokyo, 2004.

[5] C. Garlén. Svenskans Fonologi. Studentlitteratur, Lund, Sweden, 1988.

[6] S. Peyton Jones and J. Hughes. Report on the Programming Language
Haskell 98, a Non-strict, Purely Functional Language. Available at http:
//www.haskell.org, February 1999.

[7] The International Phonetic Association, 2005. http://www.arts.gla.

ac.uk/IPA.

[8] M. Uneson. Letter-To-Sound Conversion for Swedish with FST and TBL.
Term Paper: Statistical Methods, GSLT, Sweden, 2005.

[9] J. Wells. Computer-coding the IPA: a proposed extension of SAMPA,
1995.

12

