
The Labelled BNF Grammar FormalismMarkus Forsberg, Aarne RantaDepartment of Computing SieneChalmers University of Tehnology and the University of GothenburgSE-412 96 Gothenburg, Swedenfmarkus, aarneg�s.halmers.seFor BNF Converter Version 2.2, February 11, 20051 IntrodutionThis doument de�nes the grammar formalism Labelled BNF (LBNF), whih is used in the ompileronstrution tool BNF Converter. Given a grammar written in LBNF, the BNF Converter produesa omplete ompiler front end (up to, but exluding, type heking), i.e. a lexer, a parser, and anabstrat syntax de�nition. Moreover, it produes a pretty-printer and a language spei�ation in LATEX,as well as a template �le for the ompiler bak end. Sine LBNF is purely delarative, these �les anbe generated in any programming language that supports appropriate ompiler front-end tools. As ofVersion 2.0, ode an be generated in Haskell, Java, C++, and C. This doument desribes the LBNFformalism independently of ode generation, and is aimed to serve as a manual for grammar writers.2 A �rst example of LBNF grammarAs the �rst example of LBNF, onsider a triple of rules de�ning addition expressions with \1":EPlus. Exp ::= Exp "+" Num ;ENum. Exp ::= Num ;NOne. Num ::= "1" ;Apart from the labels, EPlus, ENum, and NOne, the rules are ordinary BNF rules, with terminal symbolsenlosed in double quotes and nonterminals written without quotes. The labels serve as onstrutorsfor syntax trees.From an LBNF grammar, the BNF Converter extrats an abstrat syntax and a onrete syntax. InHaskell, for instane, the abstrat syntax is implemented as a system of datatype de�nitionsdata Exp = EPlus Exp Exp | ENum Numdata Num = NOneFor other languages|C, C++, and Java|an equivalent representation is given, following the method-ology de�ned in Appel's books series Modern ompiler implementation in ML/Java/C1 . The onretesyntax is implemented by the lexer, parser and pretty-printer algorithms, whih are de�ned in othergenerated program modules.3 LBNF in a nutshell3.1 Basi LBNFBriey, an LBNF grammar is a BNF grammar where every rule is given a label. The label is used foronstruting a syntax tree whose subtrees are given by the nonterminals of the rule, in the same order.More formally, an LBNF grammar onsists of a olletion of rules, whih have the following form(expressed by a regular expression; Appendix gives a omplete BNF de�nition of the notation):1Cambridge University Press, 1998. 1



Ident "." Ident "::=" (Ident j String)* ";" ;The �rst identi�er is the rule label, followed by the value ategory. On the right-hand side of theprodution arrow (::=) is the list of prodution items. An item is either a quoted string (terminal) ora ategory symbol (non-terminal). A rule whose value ategory is C is also alled a prodution for C.Identi�ers, that is, rule names and ategory symbols, an be hosen ad libitum, with the restritionsimposed by the target language. To satisfy Haskell, and C and Java as well, the following rule is imposedAn identi�er is a nonempty sequene of letters, starting with a apital letter.3.2 Additional featuresBasi LBNF as de�ned above is learly suÆient for de�ning any ontext-free language. However, itis not always onvenient to de�ne a programming language purely with BNF rules. Therefore, someadditional features are added to LBNF: abstrat syntax onventions, lexer rules, pragmas, and maros.These features are treated in the subsequent setions.Setion 4 explains abstrat syntax onventions. Creating an abstrat syntax by adding a node typefor every BNF rule may sometimes beome too detailed, or luttered with extra strutures. To remedythis, we have identi�ed the most ommon problem ases, and added to LBNF some extra onventionsto handle them.Setion 5 explains lexer rules. Some aspets of a language belong to its lexial struture rather thanits grammar, and are more naturally desribed by regular expressions than by BNF rules. We havetherefore added to LBNF two rule formats to de�ne the lexial struture: tokens and omments.Setion 6 explains pragmas. Pragmas are rules instruting the BNFC grammar ompiler to treatsome rules of the grammar in ertain speial ways: to redue the number of entrypoints or to treat somesyntati forms as internal only.Setion 7 explains maros. Maros are syntati sugar for potentially large groups of rules and helpto write grammars onisely. This is both for the writer's and the reader's onveniene; among otherthings, maros naturally fore ertain groups of rules to go together, whih ould otherwise be spreadarbitrarily in the grammar.Setion 8 explains layout syntax, whih is a non-ontext-free feature present in some programminglanguages. LBNF has a set of rule formats for de�ning a limited form of layout syntax. It works as apreproessor that translates layout syntax into expliit struture markers.4 Abstrat syntax onventions4.1 Prede�ned basi typesThe �rst onvention are prede�ned basi types. Basi types, suh as integer and harater, an of oursebe de�ned in a labelled BNF, for example:Char_a. Char ::= "a" ;Char_b. Char ::= "b" ;This is, however, umbersome and ineÆient. Instead, we have deided to extend our formalism withprede�ned basi types, and represent their grammar as a part of lexial struture. These types are thefollowing, as de�ned by LBNF regular expressions (see 5.2 for the regular expression syntax):Integer of integers, de�ned digit+Double of oating point numbers, de�ned digit+ '.' digit+ ('e' '-'? digit+)?Char of haraters (in single quotes), de�ned '\'' ((har - ["'\\"℄) | ('\\' ["'\\nt"℄)) '\''String of strings (in double quotes), de�ned '"' ((har - ["\"\\"℄) | ('\\' ["\"\\nt"℄))* '"'Ident of identi�ers, de�ned letter (letter | digit | '_' | '\'')*In the abstrat syntax, these types are represented as orresponding types of eah language, exeptIdent, for whih no suh type exists. It is treated by a newtype in Haskell,newtype Ident = Ident String 2



as String in Java, and as a typedef to har* in C and C++.As the names of the types suggest, the lexer produes high-preision variants, for integers and oats.Authors of appliations an trunate these numbers later if they want to have low preision instead.Prede�ned ategories may not have expliit produtions in the grammar, sine this would violatetheir prede�ned meanings.4.2 Semanti dummiesSometimes the onrete syntax of a language inludes rules that make no semanti di�erene. Anexample is a BNF rule making the parser aept extra semiolons after statements:Stm ::= Stm ";" ;As this rule is semantially dummy, we do not want to represent it by a onstrutors in the abstratsyntax. Instead, we introdue the following onvention:A rule label an be an undersore , whih does not add anything to the syntax tree.Thus we an write the following rule in LBNF:_ . Stm ::= Stm ";" ;Undersores are of ourse only meaningful as replaements of one-argument onstrutors where the valuetype is the same as the argument type. Semanti dummies leave no trae in the pretty-printer. Thus,for instane, the pretty-printer \normalizes away" extra semiolons.4.3 Preedene levelsA ommon idiom in (ordinary) BNF is to use indexed variants of ategories to express preedene levels:Exp3 ::= Integer ;Exp2 ::= Exp2 "*" Exp3 ;Exp ::= Exp "+" Exp2 ;Exp ::= Exp2 ;Exp2 ::= Exp3 ;Exp3 ::= "(" Exp ")" ;The preedene level regulates the order of parsing, inluding assoiativity. Parentheses lift an expressionof any level to the highest level.A straightforward labelling of the above rules reates a grammar that does have the desired reogni-tion behavior, as the abstrat syntax is luttered with type distintions (between Exp, Exp2, and Exp3)and onstrutors (from the last three rules) with no semanti ontent. The BNF Converter solution isto distinguish among ategory symbols those that are just indexed variants of eah other:A ategory symbol an end with an integer index (i.e. a sequene of digits), and is thentreated as a type synonym of the orresponding non-indexed symbol.Thus Exp2 and Exp3 are indexed variants of Exp. The plain Exp is treated in the same way as Exp0.Transitions between indexed variants are semantially dummy, and we do not want to representthem by onstrutors in the abstrat syntax. To do this, we extend the use of undersores to indexedvariants. The example grammar above an now be labelled as follows:EInt. Exp3 ::= Integer ;ETimes. Exp2 ::= Exp2 "*" Exp3 ;EPlus. Exp ::= Exp "+" Exp2 ;_. Exp ::= Exp2 ;_. Exp2 ::= Exp3 ;_. Exp3 ::= "(" Exp ")" ;In Haskell, for instane, the datatype of expressions beomes simplydata Exp = EInt Integer | ETimes Exp Exp | EPlus Exp Exp3



and the syntax tree for 2*(3+1) isETimes (EInt 2) (EPlus (EInt 3) (EInt 1))Indexed ategories an be used for other purposes than preedene, sine the only thing we anformally hek is the type skeleton (see the setion 4.5). The parser does not need to know that theindies mean preedene, but only that indexed variants have values of the same type. The pretty-printer, however, assumes that indexed ategories are used for preedene, and may produe strangeresults if they are used in some other way.Hint. See Setion 7.2 for a onise way of de�ning dummy oerions rules.4.4 Polymorphi listsIt is easy to de�ne monomorphi list types in LBNF:NilDef. ListDef ::= ;ConsDef. ListDef ::= Def ";" ListDef ;However, ompiler writers in languages like Haskell may want to use prede�ned polymorphi lists,beause of the language support for these onstruts. LBNF permits the use of Haskell's list onstrutorsas labels, and list brakets in ategory names:[℄. [Def℄ ::= ;(:). [Def℄ ::= Def ";" [Def℄ ;As the general rule, we have[C℄, the ategory of lists of type C,[℄ and (:), the Nil and Cons rule labels,(:[℄), the rule label for one-element lists.The third rule label is used to plae an at-least-one restrition, but also to permit speial treatment ofone-element lists in the onrete syntax.In the LATEX doument (for stylisti reasons) and in the Happy �le (for syntati reasons), theategory name [X℄ is replaed by ListX. In order for this not to ause lashes, ListX may not be atthe same time used expliitly in the grammar.The list ategory onstrutor an be iterated: [[X℄℄, [[[X℄℄℄, et behave in the expeted way.The list notation an also be seen as a variant of the Kleene star and plus, and hene as an ingredientfrom Extended BNF.In other languages than Haskell, monomorphi variants of lists are generated automatially.Hint. See Setion 7.1 for onise ways of de�ning lists by just giving their terminators or separators.4.5 The type-orretness of LBNF rulesIt is ustomary in parser generators to delegate the heking of ertain errors to the target language.For instane, a Happy soure �le that Happy proesses without omplaints an still produe a Haskell�le that is rejeted by Haskell. In the same way, the BNF onverter delegates some heking to thegenerated language (for instane, the parser onit hek). However, sine it is always the easiest forthe programmer to understand error messages related to the soure, the BNF Converter performs someheks, whih are mostly onneted with the sanity of the abstrat syntax.The type heker uses a notion of the ategory skeleton of a rule, whih is a pair(C;A : : : B)where C is the unindexed left-hand-side non-terminal and A : : : B is the sequene of unindexed right-hand-side non-terminals of the rule. In other words, the ategory skeleton of a rule expresses theabstrat-syntax type of the semanti ation assoiated to that rule.We also need the notions of a regular ategory and a regular rule label. Briey, regular labels andategories are the user-de�ned ones. More formally, a regular ategory is none of [C℄,Integer, Double,Char, String and Ident, or the types de�ned by token rules (Setion 5.1). A regular rule label is noneof , [℄, (:), and (:[℄).The type heking rules are now the following: 4



A rule labelled by must have a ategory skeleton of form (C;C).A rule labelled by [℄ must have a ategory skeleton of form ([C℄; ).A rule labelled by (:) must have a ategory skeleton of form ([C℄; C[C℄).A rule labelled by (:[℄) must have a ategory skeleton of form ([C℄; C).Only regular ategories may have produtions with regular rule labels.Every regular ategory ourring in the grammar must have at least one prodution with aregular rule label.All rules with the same regular rule label must have the same ategory skeleton.The seond-last rule orresponds to the absene of empty data types in Haskell. The last rule ould bestrengthened so as to require that all regular rule labels be unique: this is needed to guarantee error-freepretty-printing. Violating this strengthened rule urrently generates only a warning, not a type error.5 Lexer De�nitions5.1 The token ruleThe token rule enables the LBNF programmer to de�ne new lexial types using a simple regularexpression notation. For instane, the following rule de�nes the type of identi�ers beginning withupper-ase letters.token UIdent (upper (letter | digit | '_')*) ;The type UIdent beomes usable as an LBNF nonterminal and as a type in the abstrat syntax. Eahtoken type is implemented by a newtype in Haskell, as a String in Java, and as a typedef to har* inC/C++.The regular expression syntax of LBNF is spei�ed in the Appendix. The abbreviations with stringsin brakets need a word of explanation:["ab7%"℄ denotes the union of the haraters 'a' 'b' '' '7' '%'{"ab7%"} denotes the sequene of the haraters 'a' 'b' '' '7' '%'The atomi expressions upper, lower, letter, and digit denote the harater lasses suggested by theirnames (letters are isolatin1). The expression har mathes any harater in the 8-bit ASCII range, andthe \epsilon" expression eps mathes the empty string.2 Thus eps is equivalent to {""}, whereas theempty language is expressed by [""℄.Note. The empty language is not available for the Java lexer tool JLex.5.2 The position token rule(As of Otober 10, 2006, only available for Haskell). Any token rule an be modi�ed by the wordposition, whih has the e�et that the datatype de�ned will arry position information. For instane,position token PIdent (letter (letter|digit|'_'|'\'')*) ;reates in Haskell the datatype de�nitionnewtype PIdent = PIdent ((Int,Int),String)where the pair of integers indiates the line and olumn of the �rst harater of the token. The pretty-printer omits the position omponent.2If we want to desribe full Java or Haskell, we must extend the harater set to Uniode. This is urrently notsupported by all lexer tools, however.
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5.3 The omment ruleComments are segments of soure ode that inlude free text and are not passed to the parser. Thenatural plae to deal with them is in the lexer. The omment rule instruts the lexer generator to treatertain piees of text as omments.The omment rule takes one or two string arguments. The �rst string de�nes how a omment begins.The seond, optional string marks the end of a omment; if it is not given then the omment is endedby a newline. For instane, the Java omment onvention is de�ned as follows:omment "//" ;omment "/*" "*/" ;6 LBNF Pragmas6.1 Internal pragmasSometimes we want to inlude in the abstrat syntax strutures that are not part of the onrete syntax,and hene not parsable. They an be, for instane, syntax trees that are produed by a type-annotatingtype heker. Even though they are not parsable, we may want to pretty-print them, for instane, inthe type heker's error messages. To de�ne suh an internal onstrutor, we use a pragma"internal" Rule ";"where Rule is a normal LBNF rule. For instane,internal EVarT. Exp ::= "(" Ident ":" Type ")";introdues a type-annotated variant of a variable expression.6.2 Entry point pragmasThe BNF Converter generates, by default, a parser for every ategory in the grammar. This is unne-essarily rih in most ases, and makes the parser larger than needed. If the size of the parser beomesritial, the entry points pragma enables the user to de�ne whih of the parsers are atually exported:entrypoints (Ident ",")* Ident ;For instane, the following pragma de�nes Stm and Exp to be the only entry points:entrypoints Stm, Exp ;7 LBNF maros7.1 Terminators and separatorsThe terminator maro de�nes a pair of list rules by what token terminates eah element in the list.For instane,terminator Stm ";" ;tells that eah statement (Stm) is terminated with a semiolon (;). It is a shorthand for the pair of rules[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;The quali�er nonempty in the maro makes one-element list to be the base ase. Thusterminator nonempty Stm ";" ;is shorthand for(:[℄). [Stm℄ ::= Stm ";" ;(:). [Stm℄ ::= Stm ";" [Stm℄ ; 6



The terminator an be spei�ed as empty "". No token is introdued then, but e.g.terminator Stm "" ;is translated to[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm [Stm℄ ;The separator maro is similar to terminator, exept that the separating token is not attahed tothe last element. Thusseparator Stm ";" ;means[℄. [Stm℄ ::= ;(:[℄). [Stm℄ ::= Stm ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;whereasseparator nonempty Stm ";" ;means(:[℄). [Stm℄ ::= Stm ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;Notie that, if the empty token "" is used, there is no di�erene between terminator and separator.Problem. The grammar generated from a separator without nonempty will atually also aept alist terminating with a semiolon, whereas the pretty-printer \normalizes" it away. This might be on-sidered a bug, but a set of rules forbidding the terminating semiolon would be muh more ompliated.The nonempty ase is strit.7.2 CoerionsThe oerions maro is a shorthand for a group of rules translating between preedene levels. Forinstane,oerions Exp 3 ;is shorthand for_. Exp ::= Exp1 ;_. Exp1 ::= Exp2 ;_. Exp2 ::= Exp3 ;_. Exp3 ::= "(" Exp ")" ;Beause of the total overage of these oerions, it does not matter if the integer indiating the highestlevel (here 3) is bigger than the highest level atually ourring, or if there are some other levels withoutprodutions in the grammar.7.3 RulesThe rules maro is a shorthand for a set of rules from whih labels are generated automatially. Forinstane,rules Type ::= Type "[" Integer "℄" | "float" | "double" | Type "*" ;is shorthand forType_0. Type ::= Type "[" Integer "℄" ;Type_float. Type ::= "float" ;Type_double. Type ::= "double" ;Type_3. Type ::= Type "*" ; 7



The labels are reated automatially. A label starts with the value ategory name. If the produtionhas just one item, whih is moreover possible as a part of an identi�er, that item is used as a suÆx. Inother ases, an integer suÆx is used. No global heks are performed when generating these labels. Anylabel name lashes that result from them are aptured by BNFC type heking on the generated rules.Notie that, using the rules maro, it is possible to de�ne an LBNF grammar without givingany labels. To guarantee the uniqueness of labels, produtions of the eah ategory must be groupedtogether.8 Layout syntaxLayout syntax is a means of using indentation to group program elements. It is used in some languages,e.g. Haskell. Those who do not know what layout syntax is or who do not like it an skip this setion.The pragmas layout, layout stop, and layout toplevel de�ne a layout syntax for a language.Before these pragmas were added, layout syntax was not de�nable in BNFC. The layout pragmas areonly available for the �les generated for Haskell-related tools; if Java, C, or C++ programmers wantto handle layout, they an use the Haskell layout resolver as a preproessor to their front end, beforethe lexer. In Haskell, the layout resolver appears, automatially, in its most natural plae, whih isbetween the lexer and the parser. The layout pragmas of BNFC are not powerful enough to handle thefull layout rule of Haskell 98, but they suÆe for the \regular" ases.Here is an example, found in the the grammar of the logial framework Alfa.layout "of", "let", "where", "sig", "strut" ;The �rst line says that "of", "let", "where", "sig", "strut" are layout words, i.e. start a layoutlist. A layout list is a list of expressions normally enlosed in urly brakets and separated by semiolons,as shown by the Alfa exampleECase. Exp ::= "ase" Exp "of" "{" [Branh℄ "}" ;separator Branh ";" ;When the layout resolver �nds the token of in the ode (i.e. in the sequene of its lexial tokens), itheks if the next token is an opening urly braket. If it is, nothing speial is done until a layout wordis enountered again. The parser will expet the semiolons and the losing braket to appear as usual.But, if the token t following of is not an opening urly braket, a braket is inserted, and thestart olumn of t is remembered as the position at whih the elements of the layout list must begin.Semiolons are inserted at those positions. When a token is eventually enountered left of the positionof t (or an end-of-�le), a losing braket is inserted at that point.Nested layout bloks are allowed, whih means that the layout resolver maintains a stak of positions.Pushing a position on the stak orresponds to inserting a left braket, and popping from the stakorresponds to inserting a right braket.Here is an example of an Alfa soure �le using layout: :: Nat = ase x ofTrue -> bFalse -> ase y ofFalse -> bNeither -> dd = ase x of True -> ase y of False -> gx -> by -> hHere is what it looks like after layout resolution: :: Nat = ase x of {True -> b;False -> ase y of {False -> b 8



};Neither -> d};d = ase x of {True -> ase y of {False -> g;x -> b};y -> h} ;There are two more layout-related pragmas. The layout stop pragma, as inlayout stop "in" ;tells the resolver that the layout list an be exited with some stop words, like in, whih exits a let list.It is no error in the resolver to exit some other kind of layout list with in, but an error will show up inthe parser.The layout toplevel pragma tells that the whole soure �le is a layout list, even though no layoutword indiates this. The position is the �rst olumn, and the resolver adds a semiolon after everyparagraph whose �rst token is at this position. No urly brakets are added. The Alfa �le above is anexample of this, with two suh semiolons added.To make layout resolution a stand-alone program, e.g. to serve as a preproessor, the programmeran modify the BNFC soure �le ResolveLayoutAlfa.hs as indiated in the �le, and either ompile itor run it in the Hugs interpreter byrunhugs ResolveLayoutX.hs <X-soure-file>We may add the generation of ResolveLayoutX.hs to a later version of BNFC.Bug. The generated layout resolver does not work orretly if a layout word is the �rst token on aline.9 Pro�lesThis setion explains a feature whih is not intended to be used in LBNF grammars written by hand, butin ones generated from the grammar formalism GF (Grammatial Framework). GF supports grammarsof natural-languages and also higher-order abstrat syntax whih is sometimes used for formal languagesto de�ne their stati semantis. The reader not familiar with these matters an skip this setion.The relation between abstrat and onrete syntax in LBNF is the simplest possible one: the sub-trees of an abstrat syntax tree are in one-to-one orrespondene with the nonterminals in the parsinggrammar. The GF formalism generalizes this relation to one in whih permutations, omissions, anddupliations an our in the transition from abstrat and onrete syntax. The way bak then requiresa rearrangement of the subtrees, whih involves uni�ation in the ase of omissions and dupliations.It is also possible to oneive some onrete-syntax onstituents as bound variables, as is the ase inhigher-order abstrat syntax. The reipe for doing this postproessing an be ompatly expressed bya pro�le, whih has a list of positions of eah argument. For instane, the pro�les in basi LBNF lookas follows:While ([℄,[0℄)([℄,[1℄)([℄,[2℄). Stm ::= "while" "(" Exp ")" Stm Stm ;That is, eah abstrat argument ours exatly one in the onrete expression, and in the same order.The syntax trees produed have the formWhile Ext Stm StmThe �rst omponents in eah list of pairs are for variable bindings. An example is the variable delarationruleDel ([℄,[0℄)([[1℄℄,[2℄). Stm ::= Typ Ident ";" Stm ;whih reates the abstrat syntaxDel Typ (\Ident -> Stm)An (arti�ial) example of dupliation would beIsAlways ([℄,[0,1℄). Sentene ::= "a" Noun "is" "always" "a" Noun ;9



whih produes trees of the formIsAlways Nounand would aept strings like a man is always a man, a bike is always a bike, but not a man is alwaysa bike.10 An optimization: left-reursive listsThe BNF representation of lists is right-reursive, following the list ontrutor in Haskell and mostother languages. Right-reursive lists, however, are an ineÆient way of parsing lists in an LALR parser,beause they an blow up the stak size. The smart programmer would implement a pair of rules suhas[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;not in the diret way, but under a left-reursive transformation, as if we wrote,[℄. [Stm℄ ::= ;(flip (:)). [Stm℄ ::= [Stm℄ Stm ";" ;Then the smart programmer would also be areful to reverse the list when it is used as an argumentof another rule onstrution.The BNF Converter automatially performs the left-reursion transformation for pairs of rules ofthe form[℄. [C℄ ::= ;(:). [C℄ ::= C x [C℄ ;where C is any ategory and x is any sequene of terminals (possibly empty). These rules an, of ourse,be generated from the terminator maro (Setion 7.1).Notie. The transformation is urrently not performed if the one-element list is the base ase.
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Appendix: LBNF Spei�ationThis doument was automatially generated by the BNF-Converter. It was generated together with thelexer, the parser, and the abstrat syntax module, whih guarantees that the doument mathes withthe implementation of the language (provided no hand-haking has taken plae).The lexial struture of BNFIdenti�ersIdenti�ers hIdent i are unquoted strings beginning with a letter, followed by any ombination of letters,digits, and the haraters ', reserved words exluded.LiteralsString literals hString i have the form "x", where x is any sequene of any haraters exept " unlesspreeded by \.Integer literals hInt i are nonempty sequenes of digits.Charater literals hChar i have the form '', where  is any single harater.Reserved words and symbolsThe set of reserved words is the set of terminals appearing in the grammar. Those reserved words thatonsist of non-letter haraters are alled symbols, and they are treated in a di�erent way from thosethat are similar to identi�ers. The lexer follows rules familiar from languages like Haskell, C, and Java,inluding longest math and spaing onventions.The reserved words used in BNF are the following:har oerions ommentdigit entrypoints epsinternal layout letterlower nonempty positionrules separator stopterminator token toplevelupperThe symbols used in BNF are the following:; . ::=[ ℄( : ), j �* + ?f gCommentsSingle-line omments begin with ��.Multiple-line omments are enlosed with f� and �g.The syntati struture of BNFNon-terminals are enlosed between h and i. The symbols ::= (prodution), j (union) and � (empty rule)belong to the BNF notation. All other symbols are terminals.hGrammar i ::= hListDef i 11



hListDef i ::= �j hDef i ; hListDef ihListItem i ::= �j hItem i hListItem ihDef i ::= hLabel i . hCat i ::= hListItem ij omment hString ij omment hString i hString ij internal hLabel i . hCat i ::= hListItem ij token hIdent i hReg ij position token hIdent i hReg ij entrypoints hListIdent ij separator hMinimumSize i hCat i hString ij terminator hMinimumSize i hCat i hString ij oerions hIdent i hInteger ij rules hIdent i ::= hListRHS ij layout hListString ij layout stop hListString ij layout toplevelhItem i ::= hString ij hCat ihCat i ::= [ hCat i ℄j hIdent ihLabel i ::= hLabelId ij hLabelId i hListProfItem ij hLabelId i hLabelId i hListProfItem ihLabelId i ::= hIdent ijj [ ℄j ( : )j ( : [ ℄ )hProfItem i ::= ( [ hListIntList i ℄ , [ hListInteger i ℄ )hIntList i ::= [ hListInteger i ℄hListInteger i ::= �j hInteger ij hInteger i , hListInteger ihListIntList i ::= �j hIntList ij hIntList i , hListIntList ihListProfItem i ::= hProfItem ij hProfItem i hListProfItem ihListString i ::= hString ij hString i , hListString ihListRHS i ::= hRHS ij hRHS i j hListRHS ihRHS i ::= hListItem ihMinimumSize i ::= nonemptyj �hReg2 i ::= hReg2 i hReg3 ij hReg3 i 12



hReg1 i ::= hReg1 i j hReg2 ij hReg2 i � hReg2 ij hReg2 ihReg3 i ::= hReg3 i *j hReg3 i +j hReg3 i ?j epsj hChar ij [ hString i ℄j f hString i gj digitj letterj upperj lowerj harj ( hReg i )hReg i ::= hReg1 ihListIdent i ::= hIdent ij hIdent i , hListIdent i
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