
The Labelled BNF Grammar FormalismMarkus Forsberg, Aarne RantaDepartment of Computing S
ien
eChalmers University of Te
hnology and the University of GothenburgSE-412 96 Gothenburg, Swedenfmarkus, aarneg�
s.
halmers.seFor BNF Converter Version 2.2, February 11, 20051 Introdu
tionThis do
ument de�nes the grammar formalism Labelled BNF (LBNF), whi
h is used in the
ompiler
onstru
tion tool BNF Converter. Given a grammar written in LBNF, the BNF Converter produ
esa
omplete
ompiler front end (up to, but ex
luding, type
he
king), i.e. a lexer, a parser, and anabstra
t syntax de�nition. Moreover, it produ
es a pretty-printer and a language spe
i�
ation in LATEX,as well as a template �le for the
ompiler ba
k end. Sin
e LBNF is purely de
larative, these �les
anbe generated in any programming language that supports appropriate
ompiler front-end tools. As ofVersion 2.0,
ode
an be generated in Haskell, Java, C++, and C. This do
ument des
ribes the LBNFformalism independently of
ode generation, and is aimed to serve as a manual for grammar writers.2 A �rst example of LBNF grammarAs the �rst example of LBNF,
onsider a triple of rules de�ning addition expressions with \1":EPlus. Exp ::= Exp "+" Num ;ENum. Exp ::= Num ;NOne. Num ::= "1" ;Apart from the labels, EPlus, ENum, and NOne, the rules are ordinary BNF rules, with terminal symbolsen
losed in double quotes and nonterminals written without quotes. The labels serve as
onstru
torsfor syntax trees.From an LBNF grammar, the BNF Converter extra
ts an abstra
t syntax and a
on
rete syntax. InHaskell, for instan
e, the abstra
t syntax is implemented as a system of datatype de�nitionsdata Exp = EPlus Exp Exp | ENum Numdata Num = NOneFor other languages|C, C++, and Java|an equivalent representation is given, following the method-ology de�ned in Appel's books series Modern
ompiler implementation in ML/Java/C1 . The
on
retesyntax is implemented by the lexer, parser and pretty-printer algorithms, whi
h are de�ned in othergenerated program modules.3 LBNF in a nutshell3.1 Basi
 LBNFBrie
y, an LBNF grammar is a BNF grammar where every rule is given a label. The label is used for
onstru
ting a syntax tree whose subtrees are given by the nonterminals of the rule, in the same order.More formally, an LBNF grammar
onsists of a
olle
tion of rules, whi
h have the following form(expressed by a regular expression; Appendix gives a
omplete BNF de�nition of the notation):1Cambridge University Press, 1998. 1

Ident "." Ident "::=" (Ident j String)* ";" ;The �rst identi�er is the rule label, followed by the value
ategory. On the right-hand side of theprodu
tion arrow (::=) is the list of produ
tion items. An item is either a quoted string (terminal) ora
ategory symbol (non-terminal). A rule whose value
ategory is C is also
alled a produ
tion for C.Identi�ers, that is, rule names and
ategory symbols,
an be
hosen ad libitum, with the restri
tionsimposed by the target language. To satisfy Haskell, and C and Java as well, the following rule is imposedAn identi�er is a nonempty sequen
e of letters, starting with a
apital letter.3.2 Additional featuresBasi
 LBNF as de�ned above is
learly suÆ
ient for de�ning any
ontext-free language. However, itis not always
onvenient to de�ne a programming language purely with BNF rules. Therefore, someadditional features are added to LBNF: abstra
t syntax
onventions, lexer rules, pragmas, and ma
ros.These features are treated in the subsequent se
tions.Se
tion 4 explains abstra
t syntax
onventions. Creating an abstra
t syntax by adding a node typefor every BNF rule may sometimes be
ome too detailed, or
luttered with extra stru
tures. To remedythis, we have identi�ed the most
ommon problem
ases, and added to LBNF some extra
onventionsto handle them.Se
tion 5 explains lexer rules. Some aspe
ts of a language belong to its lexi
al stru
ture rather thanits grammar, and are more naturally des
ribed by regular expressions than by BNF rules. We havetherefore added to LBNF two rule formats to de�ne the lexi
al stru
ture: tokens and
omments.Se
tion 6 explains pragmas. Pragmas are rules instru
ting the BNFC grammar
ompiler to treatsome rules of the grammar in
ertain spe
ial ways: to redu
e the number of entrypoints or to treat somesynta
ti
 forms as internal only.Se
tion 7 explains ma
ros. Ma
ros are synta
ti
 sugar for potentially large groups of rules and helpto write grammars
on
isely. This is both for the writer's and the reader's
onvenien
e; among otherthings, ma
ros naturally for
e
ertain groups of rules to go together, whi
h
ould otherwise be spreadarbitrarily in the grammar.Se
tion 8 explains layout syntax, whi
h is a non-
ontext-free feature present in some programminglanguages. LBNF has a set of rule formats for de�ning a limited form of layout syntax. It works as aprepro
essor that translates layout syntax into expli
it stru
ture markers.4 Abstra
t syntax
onventions4.1 Prede�ned basi
 typesThe �rst
onvention are prede�ned basi
 types. Basi
 types, su
h as integer and
hara
ter,
an of
oursebe de�ned in a labelled BNF, for example:Char_a. Char ::= "a" ;Char_b. Char ::= "b" ;This is, however,
umbersome and ineÆ
ient. Instead, we have de
ided to extend our formalism withprede�ned basi
 types, and represent their grammar as a part of lexi
al stru
ture. These types are thefollowing, as de�ned by LBNF regular expressions (see 5.2 for the regular expression syntax):Integer of integers, de�ned digit+Double of
oating point numbers, de�ned digit+ '.' digit+ ('e' '-'? digit+)?Char of
hara
ters (in single quotes), de�ned '\'' ((
har - ["'\\"℄) | ('\\' ["'\\nt"℄)) '\''String of strings (in double quotes), de�ned '"' ((
har - ["\"\\"℄) | ('\\' ["\"\\nt"℄))* '"'Ident of identi�ers, de�ned letter (letter | digit | '_' | '\'')*In the abstra
t syntax, these types are represented as
orresponding types of ea
h language, ex
eptIdent, for whi
h no su
h type exists. It is treated by a newtype in Haskell,newtype Ident = Ident String 2

as String in Java, and as a typedef to
har* in C and C++.As the names of the types suggest, the lexer produ
es high-pre
ision variants, for integers and
oats.Authors of appli
ations
an trun
ate these numbers later if they want to have low pre
ision instead.Prede�ned
ategories may not have expli
it produ
tions in the grammar, sin
e this would violatetheir prede�ned meanings.4.2 Semanti
 dummiesSometimes the
on
rete syntax of a language in
ludes rules that make no semanti
 di�eren
e. Anexample is a BNF rule making the parser a

ept extra semi
olons after statements:Stm ::= Stm ";" ;As this rule is semanti
ally dummy, we do not want to represent it by a
onstru
tors in the abstra
tsyntax. Instead, we introdu
e the following
onvention:A rule label
an be an unders
ore , whi
h does not add anything to the syntax tree.Thus we
an write the following rule in LBNF:_ . Stm ::= Stm ";" ;Unders
ores are of
ourse only meaningful as repla
ements of one-argument
onstru
tors where the valuetype is the same as the argument type. Semanti
 dummies leave no tra
e in the pretty-printer. Thus,for instan
e, the pretty-printer \normalizes away" extra semi
olons.4.3 Pre
eden
e levelsA
ommon idiom in (ordinary) BNF is to use indexed variants of
ategories to express pre
eden
e levels:Exp3 ::= Integer ;Exp2 ::= Exp2 "*" Exp3 ;Exp ::= Exp "+" Exp2 ;Exp ::= Exp2 ;Exp2 ::= Exp3 ;Exp3 ::= "(" Exp ")" ;The pre
eden
e level regulates the order of parsing, in
luding asso
iativity. Parentheses lift an expressionof any level to the highest level.A straightforward labelling of the above rules
reates a grammar that does have the desired re
ogni-tion behavior, as the abstra
t syntax is
luttered with type distin
tions (between Exp, Exp2, and Exp3)and
onstru
tors (from the last three rules) with no semanti

ontent. The BNF Converter solution isto distinguish among
ategory symbols those that are just indexed variants of ea
h other:A
ategory symbol
an end with an integer index (i.e. a sequen
e of digits), and is thentreated as a type synonym of the
orresponding non-indexed symbol.Thus Exp2 and Exp3 are indexed variants of Exp. The plain Exp is treated in the same way as Exp0.Transitions between indexed variants are semanti
ally dummy, and we do not want to representthem by
onstru
tors in the abstra
t syntax. To do this, we extend the use of unders
ores to indexedvariants. The example grammar above
an now be labelled as follows:EInt. Exp3 ::= Integer ;ETimes. Exp2 ::= Exp2 "*" Exp3 ;EPlus. Exp ::= Exp "+" Exp2 ;_. Exp ::= Exp2 ;_. Exp2 ::= Exp3 ;_. Exp3 ::= "(" Exp ")" ;In Haskell, for instan
e, the datatype of expressions be
omes simplydata Exp = EInt Integer | ETimes Exp Exp | EPlus Exp Exp3

and the syntax tree for 2*(3+1) isETimes (EInt 2) (EPlus (EInt 3) (EInt 1))Indexed
ategories
an be used for other purposes than pre
eden
e, sin
e the only thing we
anformally
he
k is the type skeleton (see the se
tion 4.5). The parser does not need to know that theindi
es mean pre
eden
e, but only that indexed variants have values of the same type. The pretty-printer, however, assumes that indexed
ategories are used for pre
eden
e, and may produ
e strangeresults if they are used in some other way.Hint. See Se
tion 7.2 for a
on
ise way of de�ning dummy
oer
ions rules.4.4 Polymorphi
 listsIt is easy to de�ne monomorphi
 list types in LBNF:NilDef. ListDef ::= ;ConsDef. ListDef ::= Def ";" ListDef ;However,
ompiler writers in languages like Haskell may want to use prede�ned polymorphi
 lists,be
ause of the language support for these
onstru
ts. LBNF permits the use of Haskell's list
onstru
torsas labels, and list bra
kets in
ategory names:[℄. [Def℄ ::= ;(:). [Def℄ ::= Def ";" [Def℄ ;As the general rule, we have[C℄, the
ategory of lists of type C,[℄ and (:), the Nil and Cons rule labels,(:[℄), the rule label for one-element lists.The third rule label is used to pla
e an at-least-one restri
tion, but also to permit spe
ial treatment ofone-element lists in the
on
rete syntax.In the LATEX do
ument (for stylisti
 reasons) and in the Happy �le (for synta
ti
 reasons), the
ategory name [X℄ is repla
ed by ListX. In order for this not to
ause
lashes, ListX may not be atthe same time used expli
itly in the grammar.The list
ategory
onstru
tor
an be iterated: [[X℄℄, [[[X℄℄℄, et
 behave in the expe
ted way.The list notation
an also be seen as a variant of the Kleene star and plus, and hen
e as an ingredientfrom Extended BNF.In other languages than Haskell, monomorphi
 variants of lists are generated automati
ally.Hint. See Se
tion 7.1 for
on
ise ways of de�ning lists by just giving their terminators or separators.4.5 The type-
orre
tness of LBNF rulesIt is
ustomary in parser generators to delegate the
he
king of
ertain errors to the target language.For instan
e, a Happy sour
e �le that Happy pro
esses without
omplaints
an still produ
e a Haskell�le that is reje
ted by Haskell. In the same way, the BNF
onverter delegates some
he
king to thegenerated language (for instan
e, the parser
on
i
t
he
k). However, sin
e it is always the easiest forthe programmer to understand error messages related to the sour
e, the BNF Converter performs some
he
ks, whi
h are mostly
onne
ted with the sanity of the abstra
t syntax.The type
he
ker uses a notion of the
ategory skeleton of a rule, whi
h is a pair(C;A : : : B)where C is the unindexed left-hand-side non-terminal and A : : : B is the sequen
e of unindexed right-hand-side non-terminals of the rule. In other words, the
ategory skeleton of a rule expresses theabstra
t-syntax type of the semanti
 a
tion asso
iated to that rule.We also need the notions of a regular
ategory and a regular rule label. Brie
y, regular labels and
ategories are the user-de�ned ones. More formally, a regular
ategory is none of [C℄,Integer, Double,Char, String and Ident, or the types de�ned by token rules (Se
tion 5.1). A regular rule label is noneof , [℄, (:), and (:[℄).The type
he
king rules are now the following: 4

A rule labelled by must have a
ategory skeleton of form (C;C).A rule labelled by [℄ must have a
ategory skeleton of form ([C℄;).A rule labelled by (:) must have a
ategory skeleton of form ([C℄; C[C℄).A rule labelled by (:[℄) must have a
ategory skeleton of form ([C℄; C).Only regular
ategories may have produ
tions with regular rule labels.Every regular
ategory o

urring in the grammar must have at least one produ
tion with aregular rule label.All rules with the same regular rule label must have the same
ategory skeleton.The se
ond-last rule
orresponds to the absen
e of empty data types in Haskell. The last rule
ould bestrengthened so as to require that all regular rule labels be unique: this is needed to guarantee error-freepretty-printing. Violating this strengthened rule
urrently generates only a warning, not a type error.5 Lexer De�nitions5.1 The token ruleThe token rule enables the LBNF programmer to de�ne new lexi
al types using a simple regularexpression notation. For instan
e, the following rule de�nes the type of identi�ers beginning withupper-
ase letters.token UIdent (upper (letter | digit | '_')*) ;The type UIdent be
omes usable as an LBNF nonterminal and as a type in the abstra
t syntax. Ea
htoken type is implemented by a newtype in Haskell, as a String in Java, and as a typedef to
har* inC/C++.The regular expression syntax of LBNF is spe
i�ed in the Appendix. The abbreviations with stringsin bra
kets need a word of explanation:["ab
7%"℄ denotes the union of the
hara
ters 'a' 'b' '
' '7' '%'{"ab
7%"} denotes the sequen
e of the
hara
ters 'a' 'b' '
' '7' '%'The atomi
 expressions upper, lower, letter, and digit denote the
hara
ter
lasses suggested by theirnames (letters are isolatin1). The expression
har mat
hes any
hara
ter in the 8-bit ASCII range, andthe \epsilon" expression eps mat
hes the empty string.2 Thus eps is equivalent to {""}, whereas theempty language is expressed by [""℄.Note. The empty language is not available for the Java lexer tool JLex.5.2 The position token rule(As of O
tober 10, 2006, only available for Haskell). Any token rule
an be modi�ed by the wordposition, whi
h has the e�e
t that the datatype de�ned will
arry position information. For instan
e,position token PIdent (letter (letter|digit|'_'|'\'')*) ;
reates in Haskell the datatype de�nitionnewtype PIdent = PIdent ((Int,Int),String)where the pair of integers indi
ates the line and
olumn of the �rst
hara
ter of the token. The pretty-printer omits the position
omponent.2If we want to des
ribe full Java or Haskell, we must extend the
hara
ter set to Uni
ode. This is
urrently notsupported by all lexer tools, however.
5

5.3 The
omment ruleComments are segments of sour
e
ode that in
lude free text and are not passed to the parser. Thenatural pla
e to deal with them is in the lexer. The
omment rule instru
ts the lexer generator to treat
ertain pie
es of text as
omments.The
omment rule takes one or two string arguments. The �rst string de�nes how a
omment begins.The se
ond, optional string marks the end of a
omment; if it is not given then the
omment is endedby a newline. For instan
e, the Java
omment
onvention is de�ned as follows:
omment "//" ;
omment "/*" "*/" ;6 LBNF Pragmas6.1 Internal pragmasSometimes we want to in
lude in the abstra
t syntax stru
tures that are not part of the
on
rete syntax,and hen
e not parsable. They
an be, for instan
e, syntax trees that are produ
ed by a type-annotatingtype
he
ker. Even though they are not parsable, we may want to pretty-print them, for instan
e, inthe type
he
ker's error messages. To de�ne su
h an internal
onstru
tor, we use a pragma"internal" Rule ";"where Rule is a normal LBNF rule. For instan
e,internal EVarT. Exp ::= "(" Ident ":" Type ")";introdu
es a type-annotated variant of a variable expression.6.2 Entry point pragmasThe BNF Converter generates, by default, a parser for every
ategory in the grammar. This is unne
-essarily ri
h in most
ases, and makes the parser larger than needed. If the size of the parser be
omes
riti
al, the entry points pragma enables the user to de�ne whi
h of the parsers are a
tually exported:entrypoints (Ident ",")* Ident ;For instan
e, the following pragma de�nes Stm and Exp to be the only entry points:entrypoints Stm, Exp ;7 LBNF ma
ros7.1 Terminators and separatorsThe terminator ma
ro de�nes a pair of list rules by what token terminates ea
h element in the list.For instan
e,terminator Stm ";" ;tells that ea
h statement (Stm) is terminated with a semi
olon (;). It is a shorthand for the pair of rules[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;The quali�er nonempty in the ma
ro makes one-element list to be the base
ase. Thusterminator nonempty Stm ";" ;is shorthand for(:[℄). [Stm℄ ::= Stm ";" ;(:). [Stm℄ ::= Stm ";" [Stm℄ ; 6

The terminator
an be spe
i�ed as empty "". No token is introdu
ed then, but e.g.terminator Stm "" ;is translated to[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm [Stm℄ ;The separator ma
ro is similar to terminator, ex
ept that the separating token is not atta
hed tothe last element. Thusseparator Stm ";" ;means[℄. [Stm℄ ::= ;(:[℄). [Stm℄ ::= Stm ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;whereasseparator nonempty Stm ";" ;means(:[℄). [Stm℄ ::= Stm ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;Noti
e that, if the empty token "" is used, there is no di�eren
e between terminator and separator.Problem. The grammar generated from a separator without nonempty will a
tually also a

ept alist terminating with a semi
olon, whereas the pretty-printer \normalizes" it away. This might be
on-sidered a bug, but a set of rules forbidding the terminating semi
olon would be mu
h more
ompli
ated.The nonempty
ase is stri
t.7.2 Coer
ionsThe
oer
ions ma
ro is a shorthand for a group of rules translating between pre
eden
e levels. Forinstan
e,
oer
ions Exp 3 ;is shorthand for_. Exp ::= Exp1 ;_. Exp1 ::= Exp2 ;_. Exp2 ::= Exp3 ;_. Exp3 ::= "(" Exp ")" ;Be
ause of the total
overage of these
oer
ions, it does not matter if the integer indi
ating the highestlevel (here 3) is bigger than the highest level a
tually o

urring, or if there are some other levels withoutprodu
tions in the grammar.7.3 RulesThe rules ma
ro is a shorthand for a set of rules from whi
h labels are generated automati
ally. Forinstan
e,rules Type ::= Type "[" Integer "℄" | "float" | "double" | Type "*" ;is shorthand forType_0. Type ::= Type "[" Integer "℄" ;Type_float. Type ::= "float" ;Type_double. Type ::= "double" ;Type_3. Type ::= Type "*" ; 7

The labels are
reated automati
ally. A label starts with the value
ategory name. If the produ
tionhas just one item, whi
h is moreover possible as a part of an identi�er, that item is used as a suÆx. Inother
ases, an integer suÆx is used. No global
he
ks are performed when generating these labels. Anylabel name
lashes that result from them are
aptured by BNFC type
he
king on the generated rules.Noti
e that, using the rules ma
ro, it is possible to de�ne an LBNF grammar without givingany labels. To guarantee the uniqueness of labels, produ
tions of the ea
h
ategory must be groupedtogether.8 Layout syntaxLayout syntax is a means of using indentation to group program elements. It is used in some languages,e.g. Haskell. Those who do not know what layout syntax is or who do not like it
an skip this se
tion.The pragmas layout, layout stop, and layout toplevel de�ne a layout syntax for a language.Before these pragmas were added, layout syntax was not de�nable in BNFC. The layout pragmas areonly available for the �les generated for Haskell-related tools; if Java, C, or C++ programmers wantto handle layout, they
an use the Haskell layout resolver as a prepro
essor to their front end, beforethe lexer. In Haskell, the layout resolver appears, automati
ally, in its most natural pla
e, whi
h isbetween the lexer and the parser. The layout pragmas of BNFC are not powerful enough to handle thefull layout rule of Haskell 98, but they suÆ
e for the \regular"
ases.Here is an example, found in the the grammar of the logi
al framework Alfa.layout "of", "let", "where", "sig", "stru
t" ;The �rst line says that "of", "let", "where", "sig", "stru
t" are layout words, i.e. start a layoutlist. A layout list is a list of expressions normally en
losed in
urly bra
kets and separated by semi
olons,as shown by the Alfa exampleECase. Exp ::= "
ase" Exp "of" "{" [Bran
h℄ "}" ;separator Bran
h ";" ;When the layout resolver �nds the token of in the
ode (i.e. in the sequen
e of its lexi
al tokens), it
he
ks if the next token is an opening
urly bra
ket. If it is, nothing spe
ial is done until a layout wordis en
ountered again. The parser will expe
t the semi
olons and the
losing bra
ket to appear as usual.But, if the token t following of is not an opening
urly bra
ket, a bra
ket is inserted, and thestart
olumn of t is remembered as the position at whi
h the elements of the layout list must begin.Semi
olons are inserted at those positions. When a token is eventually en
ountered left of the positionof t (or an end-of-�le), a
losing bra
ket is inserted at that point.Nested layout blo
ks are allowed, whi
h means that the layout resolver maintains a sta
k of positions.Pushing a position on the sta
k
orresponds to inserting a left bra
ket, and popping from the sta
k
orresponds to inserting a right bra
ket.Here is an example of an Alfa sour
e �le using layout:
 :: Nat =
ase x ofTrue -> bFalse ->
ase y ofFalse -> bNeither -> dd =
ase x of True ->
ase y of False -> gx -> by -> hHere is what it looks like after layout resolution:
 :: Nat =
ase x of {True -> b;False ->
ase y of {False -> b 8

};Neither -> d};d =
ase x of {True ->
ase y of {False -> g;x -> b};y -> h} ;There are two more layout-related pragmas. The layout stop pragma, as inlayout stop "in" ;tells the resolver that the layout list
an be exited with some stop words, like in, whi
h exits a let list.It is no error in the resolver to exit some other kind of layout list with in, but an error will show up inthe parser.The layout toplevel pragma tells that the whole sour
e �le is a layout list, even though no layoutword indi
ates this. The position is the �rst
olumn, and the resolver adds a semi
olon after everyparagraph whose �rst token is at this position. No
urly bra
kets are added. The Alfa �le above is anexample of this, with two su
h semi
olons added.To make layout resolution a stand-alone program, e.g. to serve as a prepro
essor, the programmer
an modify the BNFC sour
e �le ResolveLayoutAlfa.hs as indi
ated in the �le, and either
ompile itor run it in the Hugs interpreter byrunhugs ResolveLayoutX.hs <X-sour
e-file>We may add the generation of ResolveLayoutX.hs to a later version of BNFC.Bug. The generated layout resolver does not work
orre
tly if a layout word is the �rst token on aline.9 Pro�lesThis se
tion explains a feature whi
h is not intended to be used in LBNF grammars written by hand, butin ones generated from the grammar formalism GF (Grammati
al Framework). GF supports grammarsof natural-languages and also higher-order abstra
t syntax whi
h is sometimes used for formal languagesto de�ne their stati
 semanti
s. The reader not familiar with these matters
an skip this se
tion.The relation between abstra
t and
on
rete syntax in LBNF is the simplest possible one: the sub-trees of an abstra
t syntax tree are in one-to-one
orresponden
e with the nonterminals in the parsinggrammar. The GF formalism generalizes this relation to one in whi
h permutations, omissions, anddupli
ations
an o

ur in the transition from abstra
t and
on
rete syntax. The way ba
k then requiresa rearrangement of the subtrees, whi
h involves uni�
ation in the
ase of omissions and dupli
ations.It is also possible to
on
eive some
on
rete-syntax
onstituents as bound variables, as is the
ase inhigher-order abstra
t syntax. The re
ipe for doing this postpro
essing
an be
ompa
tly expressed bya pro�le, whi
h has a list of positions of ea
h argument. For instan
e, the pro�les in basi
 LBNF lookas follows:While ([℄,[0℄)([℄,[1℄)([℄,[2℄). Stm ::= "while" "(" Exp ")" Stm Stm ;That is, ea
h abstra
t argument o

urs exa
tly on
e in the
on
rete expression, and in the same order.The syntax trees produ
ed have the formWhile Ext Stm StmThe �rst
omponents in ea
h list of pairs are for variable bindings. An example is the variable de
larationruleDe
l ([℄,[0℄)([[1℄℄,[2℄). Stm ::= Typ Ident ";" Stm ;whi
h
reates the abstra
t syntaxDe
l Typ (\Ident -> Stm)An (arti�
ial) example of dupli
ation would beIsAlways ([℄,[0,1℄). Senten
e ::= "a" Noun "is" "always" "a" Noun ;9

whi
h produ
es trees of the formIsAlways Nounand would a

ept strings like a man is always a man, a bike is always a bike, but not a man is alwaysa bike.10 An optimization: left-re
ursive listsThe BNF representation of lists is right-re
ursive, following the list
on
tru
tor in Haskell and mostother languages. Right-re
ursive lists, however, are an ineÆ
ient way of parsing lists in an LALR parser,be
ause they
an blow up the sta
k size. The smart programmer would implement a pair of rules su
has[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;not in the dire
t way, but under a left-re
ursive transformation, as if we wrote,[℄. [Stm℄ ::= ;(flip (:)). [Stm℄ ::= [Stm℄ Stm ";" ;Then the smart programmer would also be
areful to reverse the list when it is used as an argumentof another rule
onstru
tion.The BNF Converter automati
ally performs the left-re
ursion transformation for pairs of rules ofthe form[℄. [C℄ ::= ;(:). [C℄ ::= C x [C℄ ;where C is any
ategory and x is any sequen
e of terminals (possibly empty). These rules
an, of
ourse,be generated from the terminator ma
ro (Se
tion 7.1).Noti
e. The transformation is
urrently not performed if the one-element list is the base
ase.

10

Appendix: LBNF Spe
i�
ationThis do
ument was automati
ally generated by the BNF-Converter. It was generated together with thelexer, the parser, and the abstra
t syntax module, whi
h guarantees that the do
ument mat
hes withthe implementation of the language (provided no hand-ha
king has taken pla
e).The lexi
al stru
ture of BNFIdenti�ersIdenti�ers hIdent i are unquoted strings beginning with a letter, followed by any
ombination of letters,digits, and the
hara
ters ', reserved words ex
luded.LiteralsString literals hString i have the form "x", where x is any sequen
e of any
hara
ters ex
ept " unlesspre
eded by \.Integer literals hInt i are nonempty sequen
es of digits.Chara
ter literals hChar i have the form '
', where
 is any single
hara
ter.Reserved words and symbolsThe set of reserved words is the set of terminals appearing in the grammar. Those reserved words that
onsist of non-letter
hara
ters are
alled symbols, and they are treated in a di�erent way from thosethat are similar to identi�ers. The lexer follows rules familiar from languages like Haskell, C, and Java,in
luding longest mat
h and spa
ing
onventions.The reserved words used in BNF are the following:
har
oer
ions
ommentdigit entrypoints epsinternal layout letterlower nonempty positionrules separator stopterminator token toplevelupperThe symbols used in BNF are the following:; . ::=[℄(:), j �* + ?f gCommentsSingle-line
omments begin with ��.Multiple-line
omments are en
losed with f� and �g.The synta
ti
 stru
ture of BNFNon-terminals are en
losed between h and i. The symbols ::= (produ
tion), j (union) and � (empty rule)belong to the BNF notation. All other symbols are terminals.hGrammar i ::= hListDef i 11

hListDef i ::= �j hDef i ; hListDef ihListItem i ::= �j hItem i hListItem ihDef i ::= hLabel i . hCat i ::= hListItem ij
omment hString ij
omment hString i hString ij internal hLabel i . hCat i ::= hListItem ij token hIdent i hReg ij position token hIdent i hReg ij entrypoints hListIdent ij separator hMinimumSize i hCat i hString ij terminator hMinimumSize i hCat i hString ij
oer
ions hIdent i hInteger ij rules hIdent i ::= hListRHS ij layout hListString ij layout stop hListString ij layout toplevelhItem i ::= hString ij hCat ihCat i ::= [hCat i ℄j hIdent ihLabel i ::= hLabelId ij hLabelId i hListProfItem ij hLabelId i hLabelId i hListProfItem ihLabelId i ::= hIdent ijj [℄j (:)j (: [℄)hProfItem i ::= ([hListIntList i ℄ , [hListInteger i ℄)hIntList i ::= [hListInteger i ℄hListInteger i ::= �j hInteger ij hInteger i , hListInteger ihListIntList i ::= �j hIntList ij hIntList i , hListIntList ihListProfItem i ::= hProfItem ij hProfItem i hListProfItem ihListString i ::= hString ij hString i , hListString ihListRHS i ::= hRHS ij hRHS i j hListRHS ihRHS i ::= hListItem ihMinimumSize i ::= nonemptyj �hReg2 i ::= hReg2 i hReg3 ij hReg3 i 12

hReg1 i ::= hReg1 i j hReg2 ij hReg2 i � hReg2 ij hReg2 ihReg3 i ::= hReg3 i *j hReg3 i +j hReg3 i ?j epsj hChar ij [hString i ℄j f hString i gj digitj letterj upperj lowerj
harj (hReg i)hReg i ::= hReg1 ihListIdent i ::= hIdent ij hIdent i , hListIdent i

13

