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tionThis do
ument de�nes the grammar formalism Labelled BNF (LBNF), whi
h is used in the 
ompiler
onstru
tion tool BNF Converter. Given a grammar written in LBNF, the BNF Converter produ
esa 
omplete 
ompiler front end (up to, but ex
luding, type 
he
king), i.e. a lexer, a parser, and anabstra
t syntax de�nition. Moreover, it produ
es a pretty-printer and a language spe
i�
ation in LATEX,as well as a template �le for the 
ompiler ba
k end. Sin
e LBNF is purely de
larative, these �les 
anbe generated in any programming language that supports appropriate 
ompiler front-end tools. As ofVersion 2.0, 
ode 
an be generated in Haskell, Java, C++, and C. This do
ument des
ribes the LBNFformalism independently of 
ode generation, and is aimed to serve as a manual for grammar writers.2 A �rst example of LBNF grammarAs the �rst example of LBNF, 
onsider a triple of rules de�ning addition expressions with \1":EPlus. Exp ::= Exp "+" Num ;ENum. Exp ::= Num ;NOne. Num ::= "1" ;Apart from the labels, EPlus, ENum, and NOne, the rules are ordinary BNF rules, with terminal symbolsen
losed in double quotes and nonterminals written without quotes. The labels serve as 
onstru
torsfor syntax trees.From an LBNF grammar, the BNF Converter extra
ts an abstra
t syntax and a 
on
rete syntax. InHaskell, for instan
e, the abstra
t syntax is implemented as a system of datatype de�nitionsdata Exp = EPlus Exp Exp | ENum Numdata Num = NOneFor other languages|C, C++, and Java|an equivalent representation is given, following the method-ology de�ned in Appel's books series Modern 
ompiler implementation in ML/Java/C1 . The 
on
retesyntax is implemented by the lexer, parser and pretty-printer algorithms, whi
h are de�ned in othergenerated program modules.3 LBNF in a nutshell3.1 Basi
 LBNFBrie
y, an LBNF grammar is a BNF grammar where every rule is given a label. The label is used for
onstru
ting a syntax tree whose subtrees are given by the nonterminals of the rule, in the same order.More formally, an LBNF grammar 
onsists of a 
olle
tion of rules, whi
h have the following form(expressed by a regular expression; Appendix gives a 
omplete BNF de�nition of the notation):1Cambridge University Press, 1998. 1



Ident "." Ident "::=" (Ident j String)* ";" ;The �rst identi�er is the rule label, followed by the value 
ategory. On the right-hand side of theprodu
tion arrow (::=) is the list of produ
tion items. An item is either a quoted string (terminal) ora 
ategory symbol (non-terminal). A rule whose value 
ategory is C is also 
alled a produ
tion for C.Identi�ers, that is, rule names and 
ategory symbols, 
an be 
hosen ad libitum, with the restri
tionsimposed by the target language. To satisfy Haskell, and C and Java as well, the following rule is imposedAn identi�er is a nonempty sequen
e of letters, starting with a 
apital letter.3.2 Additional featuresBasi
 LBNF as de�ned above is 
learly suÆ
ient for de�ning any 
ontext-free language. However, itis not always 
onvenient to de�ne a programming language purely with BNF rules. Therefore, someadditional features are added to LBNF: abstra
t syntax 
onventions, lexer rules, pragmas, and ma
ros.These features are treated in the subsequent se
tions.Se
tion 4 explains abstra
t syntax 
onventions. Creating an abstra
t syntax by adding a node typefor every BNF rule may sometimes be
ome too detailed, or 
luttered with extra stru
tures. To remedythis, we have identi�ed the most 
ommon problem 
ases, and added to LBNF some extra 
onventionsto handle them.Se
tion 5 explains lexer rules. Some aspe
ts of a language belong to its lexi
al stru
ture rather thanits grammar, and are more naturally des
ribed by regular expressions than by BNF rules. We havetherefore added to LBNF two rule formats to de�ne the lexi
al stru
ture: tokens and 
omments.Se
tion 6 explains pragmas. Pragmas are rules instru
ting the BNFC grammar 
ompiler to treatsome rules of the grammar in 
ertain spe
ial ways: to redu
e the number of entrypoints or to treat somesynta
ti
 forms as internal only.Se
tion 7 explains ma
ros. Ma
ros are synta
ti
 sugar for potentially large groups of rules and helpto write grammars 
on
isely. This is both for the writer's and the reader's 
onvenien
e; among otherthings, ma
ros naturally for
e 
ertain groups of rules to go together, whi
h 
ould otherwise be spreadarbitrarily in the grammar.Se
tion 8 explains layout syntax, whi
h is a non-
ontext-free feature present in some programminglanguages. LBNF has a set of rule formats for de�ning a limited form of layout syntax. It works as aprepro
essor that translates layout syntax into expli
it stru
ture markers.4 Abstra
t syntax 
onventions4.1 Prede�ned basi
 typesThe �rst 
onvention are prede�ned basi
 types. Basi
 types, su
h as integer and 
hara
ter, 
an of 
oursebe de�ned in a labelled BNF, for example:Char_a. Char ::= "a" ;Char_b. Char ::= "b" ;This is, however, 
umbersome and ineÆ
ient. Instead, we have de
ided to extend our formalism withprede�ned basi
 types, and represent their grammar as a part of lexi
al stru
ture. These types are thefollowing, as de�ned by LBNF regular expressions (see 5.2 for the regular expression syntax):Integer of integers, de�ned digit+Double of 
oating point numbers, de�ned digit+ '.' digit+ ('e' '-'? digit+)?Char of 
hara
ters (in single quotes), de�ned '\'' ((
har - ["'\\"℄) | ('\\' ["'\\nt"℄)) '\''String of strings (in double quotes), de�ned '"' ((
har - ["\"\\"℄) | ('\\' ["\"\\nt"℄))* '"'Ident of identi�ers, de�ned letter (letter | digit | '_' | '\'')*In the abstra
t syntax, these types are represented as 
orresponding types of ea
h language, ex
eptIdent, for whi
h no su
h type exists. It is treated by a newtype in Haskell,newtype Ident = Ident String 2



as String in Java, and as a typedef to 
har* in C and C++.As the names of the types suggest, the lexer produ
es high-pre
ision variants, for integers and 
oats.Authors of appli
ations 
an trun
ate these numbers later if they want to have low pre
ision instead.Prede�ned 
ategories may not have expli
it produ
tions in the grammar, sin
e this would violatetheir prede�ned meanings.4.2 Semanti
 dummiesSometimes the 
on
rete syntax of a language in
ludes rules that make no semanti
 di�eren
e. Anexample is a BNF rule making the parser a

ept extra semi
olons after statements:Stm ::= Stm ";" ;As this rule is semanti
ally dummy, we do not want to represent it by a 
onstru
tors in the abstra
tsyntax. Instead, we introdu
e the following 
onvention:A rule label 
an be an unders
ore , whi
h does not add anything to the syntax tree.Thus we 
an write the following rule in LBNF:_ . Stm ::= Stm ";" ;Unders
ores are of 
ourse only meaningful as repla
ements of one-argument 
onstru
tors where the valuetype is the same as the argument type. Semanti
 dummies leave no tra
e in the pretty-printer. Thus,for instan
e, the pretty-printer \normalizes away" extra semi
olons.4.3 Pre
eden
e levelsA 
ommon idiom in (ordinary) BNF is to use indexed variants of 
ategories to express pre
eden
e levels:Exp3 ::= Integer ;Exp2 ::= Exp2 "*" Exp3 ;Exp ::= Exp "+" Exp2 ;Exp ::= Exp2 ;Exp2 ::= Exp3 ;Exp3 ::= "(" Exp ")" ;The pre
eden
e level regulates the order of parsing, in
luding asso
iativity. Parentheses lift an expressionof any level to the highest level.A straightforward labelling of the above rules 
reates a grammar that does have the desired re
ogni-tion behavior, as the abstra
t syntax is 
luttered with type distin
tions (between Exp, Exp2, and Exp3)and 
onstru
tors (from the last three rules) with no semanti
 
ontent. The BNF Converter solution isto distinguish among 
ategory symbols those that are just indexed variants of ea
h other:A 
ategory symbol 
an end with an integer index (i.e. a sequen
e of digits), and is thentreated as a type synonym of the 
orresponding non-indexed symbol.Thus Exp2 and Exp3 are indexed variants of Exp. The plain Exp is treated in the same way as Exp0.Transitions between indexed variants are semanti
ally dummy, and we do not want to representthem by 
onstru
tors in the abstra
t syntax. To do this, we extend the use of unders
ores to indexedvariants. The example grammar above 
an now be labelled as follows:EInt. Exp3 ::= Integer ;ETimes. Exp2 ::= Exp2 "*" Exp3 ;EPlus. Exp ::= Exp "+" Exp2 ;_. Exp ::= Exp2 ;_. Exp2 ::= Exp3 ;_. Exp3 ::= "(" Exp ")" ;In Haskell, for instan
e, the datatype of expressions be
omes simplydata Exp = EInt Integer | ETimes Exp Exp | EPlus Exp Exp3



and the syntax tree for 2*(3+1) isETimes (EInt 2) (EPlus (EInt 3) (EInt 1))Indexed 
ategories 
an be used for other purposes than pre
eden
e, sin
e the only thing we 
anformally 
he
k is the type skeleton (see the se
tion 4.5). The parser does not need to know that theindi
es mean pre
eden
e, but only that indexed variants have values of the same type. The pretty-printer, however, assumes that indexed 
ategories are used for pre
eden
e, and may produ
e strangeresults if they are used in some other way.Hint. See Se
tion 7.2 for a 
on
ise way of de�ning dummy 
oer
ions rules.4.4 Polymorphi
 listsIt is easy to de�ne monomorphi
 list types in LBNF:NilDef. ListDef ::= ;ConsDef. ListDef ::= Def ";" ListDef ;However, 
ompiler writers in languages like Haskell may want to use prede�ned polymorphi
 lists,be
ause of the language support for these 
onstru
ts. LBNF permits the use of Haskell's list 
onstru
torsas labels, and list bra
kets in 
ategory names:[℄. [Def℄ ::= ;(:). [Def℄ ::= Def ";" [Def℄ ;As the general rule, we have[C℄, the 
ategory of lists of type C,[℄ and (:), the Nil and Cons rule labels,(:[℄), the rule label for one-element lists.The third rule label is used to pla
e an at-least-one restri
tion, but also to permit spe
ial treatment ofone-element lists in the 
on
rete syntax.In the LATEX do
ument (for stylisti
 reasons) and in the Happy �le (for synta
ti
 reasons), the
ategory name [X℄ is repla
ed by ListX. In order for this not to 
ause 
lashes, ListX may not be atthe same time used expli
itly in the grammar.The list 
ategory 
onstru
tor 
an be iterated: [[X℄℄, [[[X℄℄℄, et
 behave in the expe
ted way.The list notation 
an also be seen as a variant of the Kleene star and plus, and hen
e as an ingredientfrom Extended BNF.In other languages than Haskell, monomorphi
 variants of lists are generated automati
ally.Hint. See Se
tion 7.1 for 
on
ise ways of de�ning lists by just giving their terminators or separators.4.5 The type-
orre
tness of LBNF rulesIt is 
ustomary in parser generators to delegate the 
he
king of 
ertain errors to the target language.For instan
e, a Happy sour
e �le that Happy pro
esses without 
omplaints 
an still produ
e a Haskell�le that is reje
ted by Haskell. In the same way, the BNF 
onverter delegates some 
he
king to thegenerated language (for instan
e, the parser 
on
i
t 
he
k). However, sin
e it is always the easiest forthe programmer to understand error messages related to the sour
e, the BNF Converter performs some
he
ks, whi
h are mostly 
onne
ted with the sanity of the abstra
t syntax.The type 
he
ker uses a notion of the 
ategory skeleton of a rule, whi
h is a pair(C;A : : : B)where C is the unindexed left-hand-side non-terminal and A : : : B is the sequen
e of unindexed right-hand-side non-terminals of the rule. In other words, the 
ategory skeleton of a rule expresses theabstra
t-syntax type of the semanti
 a
tion asso
iated to that rule.We also need the notions of a regular 
ategory and a regular rule label. Brie
y, regular labels and
ategories are the user-de�ned ones. More formally, a regular 
ategory is none of [C℄,Integer, Double,Char, String and Ident, or the types de�ned by token rules (Se
tion 5.1). A regular rule label is noneof , [℄, (:), and (:[℄).The type 
he
king rules are now the following: 4



A rule labelled by must have a 
ategory skeleton of form (C;C).A rule labelled by [℄ must have a 
ategory skeleton of form ([C℄; ).A rule labelled by (:) must have a 
ategory skeleton of form ([C℄; C[C℄).A rule labelled by (:[℄) must have a 
ategory skeleton of form ([C℄; C).Only regular 
ategories may have produ
tions with regular rule labels.Every regular 
ategory o

urring in the grammar must have at least one produ
tion with aregular rule label.All rules with the same regular rule label must have the same 
ategory skeleton.The se
ond-last rule 
orresponds to the absen
e of empty data types in Haskell. The last rule 
ould bestrengthened so as to require that all regular rule labels be unique: this is needed to guarantee error-freepretty-printing. Violating this strengthened rule 
urrently generates only a warning, not a type error.5 Lexer De�nitions5.1 The token ruleThe token rule enables the LBNF programmer to de�ne new lexi
al types using a simple regularexpression notation. For instan
e, the following rule de�nes the type of identi�ers beginning withupper-
ase letters.token UIdent (upper (letter | digit | '_')*) ;The type UIdent be
omes usable as an LBNF nonterminal and as a type in the abstra
t syntax. Ea
htoken type is implemented by a newtype in Haskell, as a String in Java, and as a typedef to 
har* inC/C++.The regular expression syntax of LBNF is spe
i�ed in the Appendix. The abbreviations with stringsin bra
kets need a word of explanation:["ab
7%"℄ denotes the union of the 
hara
ters 'a' 'b' '
' '7' '%'{"ab
7%"} denotes the sequen
e of the 
hara
ters 'a' 'b' '
' '7' '%'The atomi
 expressions upper, lower, letter, and digit denote the 
hara
ter 
lasses suggested by theirnames (letters are isolatin1). The expression 
har mat
hes any 
hara
ter in the 8-bit ASCII range, andthe \epsilon" expression eps mat
hes the empty string.2 Thus eps is equivalent to {""}, whereas theempty language is expressed by [""℄.Note. The empty language is not available for the Java lexer tool JLex.5.2 The position token rule(As of O
tober 10, 2006, only available for Haskell). Any token rule 
an be modi�ed by the wordposition, whi
h has the e�e
t that the datatype de�ned will 
arry position information. For instan
e,position token PIdent (letter (letter|digit|'_'|'\'')*) ;
reates in Haskell the datatype de�nitionnewtype PIdent = PIdent ((Int,Int),String)where the pair of integers indi
ates the line and 
olumn of the �rst 
hara
ter of the token. The pretty-printer omits the position 
omponent.2If we want to des
ribe full Java or Haskell, we must extend the 
hara
ter set to Uni
ode. This is 
urrently notsupported by all lexer tools, however.
5



5.3 The 
omment ruleComments are segments of sour
e 
ode that in
lude free text and are not passed to the parser. Thenatural pla
e to deal with them is in the lexer. The 
omment rule instru
ts the lexer generator to treat
ertain pie
es of text as 
omments.The 
omment rule takes one or two string arguments. The �rst string de�nes how a 
omment begins.The se
ond, optional string marks the end of a 
omment; if it is not given then the 
omment is endedby a newline. For instan
e, the Java 
omment 
onvention is de�ned as follows:
omment "//" ;
omment "/*" "*/" ;6 LBNF Pragmas6.1 Internal pragmasSometimes we want to in
lude in the abstra
t syntax stru
tures that are not part of the 
on
rete syntax,and hen
e not parsable. They 
an be, for instan
e, syntax trees that are produ
ed by a type-annotatingtype 
he
ker. Even though they are not parsable, we may want to pretty-print them, for instan
e, inthe type 
he
ker's error messages. To de�ne su
h an internal 
onstru
tor, we use a pragma"internal" Rule ";"where Rule is a normal LBNF rule. For instan
e,internal EVarT. Exp ::= "(" Ident ":" Type ")";introdu
es a type-annotated variant of a variable expression.6.2 Entry point pragmasThe BNF Converter generates, by default, a parser for every 
ategory in the grammar. This is unne
-essarily ri
h in most 
ases, and makes the parser larger than needed. If the size of the parser be
omes
riti
al, the entry points pragma enables the user to de�ne whi
h of the parsers are a
tually exported:entrypoints (Ident ",")* Ident ;For instan
e, the following pragma de�nes Stm and Exp to be the only entry points:entrypoints Stm, Exp ;7 LBNF ma
ros7.1 Terminators and separatorsThe terminator ma
ro de�nes a pair of list rules by what token terminates ea
h element in the list.For instan
e,terminator Stm ";" ;tells that ea
h statement (Stm) is terminated with a semi
olon (;). It is a shorthand for the pair of rules[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;The quali�er nonempty in the ma
ro makes one-element list to be the base 
ase. Thusterminator nonempty Stm ";" ;is shorthand for(:[℄). [Stm℄ ::= Stm ";" ;(:). [Stm℄ ::= Stm ";" [Stm℄ ; 6



The terminator 
an be spe
i�ed as empty "". No token is introdu
ed then, but e.g.terminator Stm "" ;is translated to[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm [Stm℄ ;The separator ma
ro is similar to terminator, ex
ept that the separating token is not atta
hed tothe last element. Thusseparator Stm ";" ;means[℄. [Stm℄ ::= ;(:[℄). [Stm℄ ::= Stm ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;whereasseparator nonempty Stm ";" ;means(:[℄). [Stm℄ ::= Stm ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;Noti
e that, if the empty token "" is used, there is no di�eren
e between terminator and separator.Problem. The grammar generated from a separator without nonempty will a
tually also a

ept alist terminating with a semi
olon, whereas the pretty-printer \normalizes" it away. This might be 
on-sidered a bug, but a set of rules forbidding the terminating semi
olon would be mu
h more 
ompli
ated.The nonempty 
ase is stri
t.7.2 Coer
ionsThe 
oer
ions ma
ro is a shorthand for a group of rules translating between pre
eden
e levels. Forinstan
e,
oer
ions Exp 3 ;is shorthand for_. Exp ::= Exp1 ;_. Exp1 ::= Exp2 ;_. Exp2 ::= Exp3 ;_. Exp3 ::= "(" Exp ")" ;Be
ause of the total 
overage of these 
oer
ions, it does not matter if the integer indi
ating the highestlevel (here 3) is bigger than the highest level a
tually o

urring, or if there are some other levels withoutprodu
tions in the grammar.7.3 RulesThe rules ma
ro is a shorthand for a set of rules from whi
h labels are generated automati
ally. Forinstan
e,rules Type ::= Type "[" Integer "℄" | "float" | "double" | Type "*" ;is shorthand forType_0. Type ::= Type "[" Integer "℄" ;Type_float. Type ::= "float" ;Type_double. Type ::= "double" ;Type_3. Type ::= Type "*" ; 7



The labels are 
reated automati
ally. A label starts with the value 
ategory name. If the produ
tionhas just one item, whi
h is moreover possible as a part of an identi�er, that item is used as a suÆx. Inother 
ases, an integer suÆx is used. No global 
he
ks are performed when generating these labels. Anylabel name 
lashes that result from them are 
aptured by BNFC type 
he
king on the generated rules.Noti
e that, using the rules ma
ro, it is possible to de�ne an LBNF grammar without givingany labels. To guarantee the uniqueness of labels, produ
tions of the ea
h 
ategory must be groupedtogether.8 Layout syntaxLayout syntax is a means of using indentation to group program elements. It is used in some languages,e.g. Haskell. Those who do not know what layout syntax is or who do not like it 
an skip this se
tion.The pragmas layout, layout stop, and layout toplevel de�ne a layout syntax for a language.Before these pragmas were added, layout syntax was not de�nable in BNFC. The layout pragmas areonly available for the �les generated for Haskell-related tools; if Java, C, or C++ programmers wantto handle layout, they 
an use the Haskell layout resolver as a prepro
essor to their front end, beforethe lexer. In Haskell, the layout resolver appears, automati
ally, in its most natural pla
e, whi
h isbetween the lexer and the parser. The layout pragmas of BNFC are not powerful enough to handle thefull layout rule of Haskell 98, but they suÆ
e for the \regular" 
ases.Here is an example, found in the the grammar of the logi
al framework Alfa.layout "of", "let", "where", "sig", "stru
t" ;The �rst line says that "of", "let", "where", "sig", "stru
t" are layout words, i.e. start a layoutlist. A layout list is a list of expressions normally en
losed in 
urly bra
kets and separated by semi
olons,as shown by the Alfa exampleECase. Exp ::= "
ase" Exp "of" "{" [Bran
h℄ "}" ;separator Bran
h ";" ;When the layout resolver �nds the token of in the 
ode (i.e. in the sequen
e of its lexi
al tokens), it
he
ks if the next token is an opening 
urly bra
ket. If it is, nothing spe
ial is done until a layout wordis en
ountered again. The parser will expe
t the semi
olons and the 
losing bra
ket to appear as usual.But, if the token t following of is not an opening 
urly bra
ket, a bra
ket is inserted, and thestart 
olumn of t is remembered as the position at whi
h the elements of the layout list must begin.Semi
olons are inserted at those positions. When a token is eventually en
ountered left of the positionof t (or an end-of-�le), a 
losing bra
ket is inserted at that point.Nested layout blo
ks are allowed, whi
h means that the layout resolver maintains a sta
k of positions.Pushing a position on the sta
k 
orresponds to inserting a left bra
ket, and popping from the sta
k
orresponds to inserting a right bra
ket.Here is an example of an Alfa sour
e �le using layout:
 :: Nat = 
ase x ofTrue -> bFalse -> 
ase y ofFalse -> bNeither -> dd = 
ase x of True -> 
ase y of False -> gx -> by -> hHere is what it looks like after layout resolution:
 :: Nat = 
ase x of {True -> b;False -> 
ase y of {False -> b 8



};Neither -> d};d = 
ase x of {True -> 
ase y of {False -> g;x -> b};y -> h} ;There are two more layout-related pragmas. The layout stop pragma, as inlayout stop "in" ;tells the resolver that the layout list 
an be exited with some stop words, like in, whi
h exits a let list.It is no error in the resolver to exit some other kind of layout list with in, but an error will show up inthe parser.The layout toplevel pragma tells that the whole sour
e �le is a layout list, even though no layoutword indi
ates this. The position is the �rst 
olumn, and the resolver adds a semi
olon after everyparagraph whose �rst token is at this position. No 
urly bra
kets are added. The Alfa �le above is anexample of this, with two su
h semi
olons added.To make layout resolution a stand-alone program, e.g. to serve as a prepro
essor, the programmer
an modify the BNFC sour
e �le ResolveLayoutAlfa.hs as indi
ated in the �le, and either 
ompile itor run it in the Hugs interpreter byrunhugs ResolveLayoutX.hs <X-sour
e-file>We may add the generation of ResolveLayoutX.hs to a later version of BNFC.Bug. The generated layout resolver does not work 
orre
tly if a layout word is the �rst token on aline.9 Pro�lesThis se
tion explains a feature whi
h is not intended to be used in LBNF grammars written by hand, butin ones generated from the grammar formalism GF (Grammati
al Framework). GF supports grammarsof natural-languages and also higher-order abstra
t syntax whi
h is sometimes used for formal languagesto de�ne their stati
 semanti
s. The reader not familiar with these matters 
an skip this se
tion.The relation between abstra
t and 
on
rete syntax in LBNF is the simplest possible one: the sub-trees of an abstra
t syntax tree are in one-to-one 
orresponden
e with the nonterminals in the parsinggrammar. The GF formalism generalizes this relation to one in whi
h permutations, omissions, anddupli
ations 
an o

ur in the transition from abstra
t and 
on
rete syntax. The way ba
k then requiresa rearrangement of the subtrees, whi
h involves uni�
ation in the 
ase of omissions and dupli
ations.It is also possible to 
on
eive some 
on
rete-syntax 
onstituents as bound variables, as is the 
ase inhigher-order abstra
t syntax. The re
ipe for doing this postpro
essing 
an be 
ompa
tly expressed bya pro�le, whi
h has a list of positions of ea
h argument. For instan
e, the pro�les in basi
 LBNF lookas follows:While ([℄,[0℄)([℄,[1℄)([℄,[2℄). Stm ::= "while" "(" Exp ")" Stm Stm ;That is, ea
h abstra
t argument o

urs exa
tly on
e in the 
on
rete expression, and in the same order.The syntax trees produ
ed have the formWhile Ext Stm StmThe �rst 
omponents in ea
h list of pairs are for variable bindings. An example is the variable de
larationruleDe
l ([℄,[0℄)([[1℄℄,[2℄). Stm ::= Typ Ident ";" Stm ;whi
h 
reates the abstra
t syntaxDe
l Typ (\Ident -> Stm)An (arti�
ial) example of dupli
ation would beIsAlways ([℄,[0,1℄). Senten
e ::= "a" Noun "is" "always" "a" Noun ;9



whi
h produ
es trees of the formIsAlways Nounand would a

ept strings like a man is always a man, a bike is always a bike, but not a man is alwaysa bike.10 An optimization: left-re
ursive listsThe BNF representation of lists is right-re
ursive, following the list 
on
tru
tor in Haskell and mostother languages. Right-re
ursive lists, however, are an ineÆ
ient way of parsing lists in an LALR parser,be
ause they 
an blow up the sta
k size. The smart programmer would implement a pair of rules su
has[℄. [Stm℄ ::= ;(:). [Stm℄ ::= Stm ";" [Stm℄ ;not in the dire
t way, but under a left-re
ursive transformation, as if we wrote,[℄. [Stm℄ ::= ;(flip (:)). [Stm℄ ::= [Stm℄ Stm ";" ;Then the smart programmer would also be 
areful to reverse the list when it is used as an argumentof another rule 
onstru
tion.The BNF Converter automati
ally performs the left-re
ursion transformation for pairs of rules ofthe form[℄. [C℄ ::= ;(:). [C℄ ::= C x [C℄ ;where C is any 
ategory and x is any sequen
e of terminals (possibly empty). These rules 
an, of 
ourse,be generated from the terminator ma
ro (Se
tion 7.1).Noti
e. The transformation is 
urrently not performed if the one-element list is the base 
ase.
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Appendix: LBNF Spe
i�
ationThis do
ument was automati
ally generated by the BNF-Converter. It was generated together with thelexer, the parser, and the abstra
t syntax module, whi
h guarantees that the do
ument mat
hes withthe implementation of the language (provided no hand-ha
king has taken pla
e).The lexi
al stru
ture of BNFIdenti�ersIdenti�ers hIdent i are unquoted strings beginning with a letter, followed by any 
ombination of letters,digits, and the 
hara
ters ', reserved words ex
luded.LiteralsString literals hString i have the form "x", where x is any sequen
e of any 
hara
ters ex
ept " unlesspre
eded by \.Integer literals hInt i are nonempty sequen
es of digits.Chara
ter literals hChar i have the form '
', where 
 is any single 
hara
ter.Reserved words and symbolsThe set of reserved words is the set of terminals appearing in the grammar. Those reserved words that
onsist of non-letter 
hara
ters are 
alled symbols, and they are treated in a di�erent way from thosethat are similar to identi�ers. The lexer follows rules familiar from languages like Haskell, C, and Java,in
luding longest mat
h and spa
ing 
onventions.The reserved words used in BNF are the following:
har 
oer
ions 
ommentdigit entrypoints epsinternal layout letterlower nonempty positionrules separator stopterminator token toplevelupperThe symbols used in BNF are the following:; . ::=[ ℄( : ), j �* + ?f gCommentsSingle-line 
omments begin with ��.Multiple-line 
omments are en
losed with f� and �g.The synta
ti
 stru
ture of BNFNon-terminals are en
losed between h and i. The symbols ::= (produ
tion), j (union) and � (empty rule)belong to the BNF notation. All other symbols are terminals.hGrammar i ::= hListDef i 11



hListDef i ::= �j hDef i ; hListDef ihListItem i ::= �j hItem i hListItem ihDef i ::= hLabel i . hCat i ::= hListItem ij 
omment hString ij 
omment hString i hString ij internal hLabel i . hCat i ::= hListItem ij token hIdent i hReg ij position token hIdent i hReg ij entrypoints hListIdent ij separator hMinimumSize i hCat i hString ij terminator hMinimumSize i hCat i hString ij 
oer
ions hIdent i hInteger ij rules hIdent i ::= hListRHS ij layout hListString ij layout stop hListString ij layout toplevelhItem i ::= hString ij hCat ihCat i ::= [ hCat i ℄j hIdent ihLabel i ::= hLabelId ij hLabelId i hListProfItem ij hLabelId i hLabelId i hListProfItem ihLabelId i ::= hIdent ijj [ ℄j ( : )j ( : [ ℄ )hProfItem i ::= ( [ hListIntList i ℄ , [ hListInteger i ℄ )hIntList i ::= [ hListInteger i ℄hListInteger i ::= �j hInteger ij hInteger i , hListInteger ihListIntList i ::= �j hIntList ij hIntList i , hListIntList ihListProfItem i ::= hProfItem ij hProfItem i hListProfItem ihListString i ::= hString ij hString i , hListString ihListRHS i ::= hRHS ij hRHS i j hListRHS ihRHS i ::= hListItem ihMinimumSize i ::= nonemptyj �hReg2 i ::= hReg2 i hReg3 ij hReg3 i 12



hReg1 i ::= hReg1 i j hReg2 ij hReg2 i � hReg2 ij hReg2 ihReg3 i ::= hReg3 i *j hReg3 i +j hReg3 i ?j epsj hChar ij [ hString i ℄j f hString i gj digitj letterj upperj lowerj 
harj ( hReg i )hReg i ::= hReg1 ihListIdent i ::= hIdent ij hIdent i , hListIdent i
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