
Compound Analysis in FM
Work Paper

Markus Forsberg
Språkbanken, Department of Swedish Language

University of Gothenburg
markus.forsberg@gu.se

We will describe the compound algorithm of Functional Morphology and suggest
a novel improvement.

The first step in the compound analysis of Functional Morphology isdeconstruct,
which deconstructs the input string into a set of sequences of forms, where the forms are
word forms in our lexicon. The lexical lookup occurs in the functionlexical prefix,
which divides the string into all prefixes occuring in the lexicon together with their
suffixes. The suffixes are recursively deconstructed.

If we have sandhi-like phenomena in the word boundaries, e.g., the three conso-
nant rule1 in Swedish, thenlexical prefix would be responsible of generating the
candidates that the phenomena predict.

deconstruct([]) = {[]}
deconstruct(s) = {form : forms | (form, suffix) ∈ lexical prefix(s)∧

forms ∈ deconstruct(suffix)}

The functiondeconstruct is typically overgenerating, so in the next step we use
the functionvalidate to filter out impossible compounds. Note, if alphabetic charac-
ters are elements in the lexicon, we end up with a combinatorial explosion by using
deconstruct. For this reason, we normally push the testvalidate into the generator
deconstruct, or, as is the case in Functional Morphology, use a lazy language.

compound(s) = {c | forms ∈ deconstruct(s) ∧ c ∈ validate(forms)}

It is the validate function we will focus on here, where we start with describing
the current approach of Functional Morphology. Every morphosyntactic description
in Functional Morphology are associated with a compound attribute integer value, en-
coding where a form with that morphosyntactic description may occur in a compound.

1The rule concerns Swedish compound formation: if a compoundboundary consists of three consonants
that are the same, then these consonants are reduced into twoconsonants, e.g., glass + skål→ glasskål (Eng.
’ice cream bowl’). This reduction introduces ambiguity, since we have glass+skål and glas+skål (Eng. ’glass
bowl’), andlexical prefix is responsible of generating both candidates.

1



Naturally, a form may have many descriptions, and consequently, many compound
attribute values, since forms are homographically ambiguous.

validate(c) = {c |x ∈ attributes(c) ∧ valid sequence(x)}

The functionattributes generates all possible compound parameter sequences,
andvalid sequence is a boolean function that describes which sequences are consid-
ered possible.

The algorithm works efficiently, but the description of compounds is unsatisfac-
tory: it is highly inflexible, we do not use all information that is actually available,
and the use of integers to encode compounding behaviour is simply error-prone and
unaesthetic.

Let us start by looking at what information we have availablein an analysis in Func-
tional Morphology, here for the Swedish wordankans (Eng. the duck’s), which only
has one analysis. The eight fields have the following meaning: wf is the current word
form, cf its citation form,pos its word class,msd its morphosyntactic description,inhs
its inherent feature,lid its lemma id,pid its paradigm identifier, andattr its compound
attribute.

wf ankans cf anka
pos nn msd sg def gen
inhs u lid anka..nn.1
pid nn 1u flicka attr 0

We can now ask us the question — do we actually need theattr field, why not have
compound rules based on all the other fields? This idea will befurther pursued in the
rest of the text.

For example, we may have a rule for Swedish noun compound looking like this,
where words taggedci are compound forms that may appear in initial positions and
words tagged withcm are compound forms that may appear in medial positions.

rule noun[pos = nn] = {msd = ci}{msd = cm}∗{msd /∈ {ci, cm}}

The name of the rule isnoun, and the associationpos=nn enclosed in square brack-
ets is common for all patterns after the equal sign. The first pattern requires that the
first word form hasmsd=ci, the second pattern requires zero or more word forms with
msd=cm, and the third and last pattern requires a word form that has amsd which is
notci or cm.

2


