
Thesis for the Degree of Licentiate of Engineering

Applications of Functional Programming

in Processing

Formal and Natural Languages

Markus Forsberg

Department of Computing Science

Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg, Sweden

Göteborg, December 2004



Applications of Functional Programming
in Processing Natural and Formal Languages
Markus Forsberg

c© Markus Forsberg, 2004

Technical Report no. 40L
ISSN 1651-4963
School of Computer Science and Engineering

Department of Computing Science
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
Telephone + 46 (0)31-772 1000

Printed at Chalmers, Göteborg, Sweden, 2004



Abstrakt (Swedish)

Avhandlingen beskriver hur funktionell programmering kan användas för
att behandla formella och naturliga spr̊ak. Teknikerna som beskrivs är nära
kopplade till kompilatorkonstruktion, vilket är tydligast i arbetet om BNF
Converter.

Den första delen av avhandlingen beskriver BNFC (BNF Converter), ett
flerspr̊akligt kompilatorverktyg. BNFC tar som indata en grammatik skriven
i ’Labelled BNF’-notation (LBNF), och genererar komponenter för de första
faserna i en kompilator (en abstrakt syntax, en lexer och en parser). Vidare
genereras fallanalys av och utskrifthanterare för den abstrakta syntaxen, ett
testprogram och dokumentation för det beskrivna spr̊aket. Programkompo-
nenterna kan genereras i Haskell, Java, C och C++ och deras parser- och
lexerverktyg. BNFC är skrivet i Haskell.

Den metodik som används för att generera komponenterna är baserad
p̊a Appels böcker om kompilatorkonstruktion. BNFC har använts som ett
undervisningsvertyg i kompilatorkonstruktionskurser p̊a Chalmers. Den har
även använts i forskningsrelaterad programspr̊aksutveckling och i en indus-
triell applikation där den har använts för att producera en kompilator för
ett protokollbeskrivningsspr̊ak för telekommunikation.

Den andra delen av avhandlingen beskriver Funktionell Morfologi, ett
verktyg för att implementera morfologier för naturliga spr̊ak i det funk-
tionella spr̊aket Haskell. Den grundläggande metoden är enkel: istället för
att använda otypade, reguljära uttryck, som är det främsta verktyget för
morfologibeskrivning idag, s̊a använder vi oss av ändliga funktioner över
ändliga algebraiska datatyper. Definitionen av dessa datatyper och funk-
tioner är den spr̊akberoende delen av morfologin. Den spr̊akoberoende delen
best̊ar av ett otypat lexikonformat som används till översättning till andra
morfologiformat, syntes av ordformer och till att generera en datastruktur
för analys.

Funktionell Morfologi bygger p̊a Huets spr̊akteknologiska verktyg Zen,
som han har använt för att implementera en morfologi för Sanskrit. Målet
har varit att göra det enkelt för lingvister som inte är erfarna funktionella
programmarerare att applicera ideerna p̊a nya spr̊ak. Ett bevis p̊a metodens
produktivitet är att morfologier för Svenska, Italienska, Ryska, Spanska och
Latin har implementerats.



Abstract (English)

This thesis describes two applications of functional programming to process
formal and natural languages. The techniques described in this thesis are
closely connected to compiler construction, which is obvious in the work on
BNF Converter.

The first part of the thesis describes the BNFC (the BNF Converter)
application, a multi-lingual compiler tool. BNFC takes as its input a gram-
mar written in Labelled BNF (LBNF) notation, and generates a compiler
front-end (an abstract syntax, a lexer, and a parser). Furthermore, it gen-
erates a case skeleton usable as the starting point of back-end construction,
a pretty printer, a test bench, and a LATEX document usable as a language
specification. The program components can be generated in Haskell, Java,
C and C++, and their standard parser and lexer tools. BNFC itself was
written in Haskell.

The methodology used for the generated front-end is based on Appel’s
books on compiler construction. BNFC has been used as a teaching tool
in compiler construction courses at Chalmers. It has also been applied to
research-related programming language development, and in an industrial
application producing a compiler for a telecommunications protocol descrip-
tion language.

The second part of the thesis describes Functional Morphology, a toolkit
for implementing natural language morphology in the functional language
Haskell. The main idea behind is simple: instead of working with untyped
regular expressions, which is the state of the art of morphology in com-
putational linguistics, we use finite functions over hereditarily finite alge-
braic data types. The definitions of these data types and functions are
the language-dependent part of the morphology. The language-independent
part consists of an untyped dictionary format which is used for translation
to other morphology formats and synthesis of word forms, and to generate
a decorated trie, which is used for analysis.

Functional Morphology builds on ideas introduced by Huet in his com-
putational linguistics toolkit Zen, which he has used to implement the mor-
phology of Sanskrit. The goal has been to make it easy for linguists who are
not trained as functional programmers, to apply the ideas to new languages.
As a proof of the productivity of the method, morphologies for Swedish,
Italian, Russian, Spanish, and Latin have already been implemented.



The four papers included in this thesis have been published previously
as follows:

• Paper I: Labelled BNF: A High-Level Formalism For Defining Well-
Behaved Programming Languages, Markus Forsberg & Aarne Ranta,
Proceedings of the Estonian Academy of Sciences, Special issue on
programming theory, NWPT’02, December 2003, pages 356–393

• Paper II (Technical Report): BNF Converter: Multilingual Front-
End Generation from Labelled BNF Grammars, Michael Pellauer,
Markus Forsberg & Aarne Ranta, Technical Report no. 2004-09 in
Computing Science at Chalmers University of Technology and Göteborg
University

• Paper III: Tool Demonstration: BNF Converter, Markus Forsberg &
Aarne Ranta, Proceedings of the ACM SIGPLAN 2004 Haskell Work-
shop, Snowbird, Utah, USA, pages 94–95

• Paper IV: Functional Morphology, Markus Forsberg & Aarne Ranta,
Proceedings of the Ninth ACM SIGPLAN International Conference
on Functional Programming, September 19-21, 2004, Snowbird, Utah,
USA, pages 213–223

III



Acknowledgements

First, I would like to direct my sincerest thanks to my supervisor, Aarne
Ranta, who helped me immensely in getting to this point in my graduate
studies.

Secondly, I would like to thank all the members of the Language Tech-
nology group and my PhD committee. Thanks for all inspiring discussions
and for your help with improving the quality of my work. In particular, I
want to thank Kristofer Johannisson, Graham Kemp and Bengt Nordström
for reading this thesis and for giving suggestions for improvement. And
thanks all for being such a nice group of people.

Thirdly, thanks all co-workers at the Computing Science department at
Chalmers — you provide a great working environment.

I would also like thank my family and friends for making my life outside
the office meaningful and happy.

Finally, but not least, I would like to give special thanks to my girlfriend
Merja, who makes my world a better place.

IV



Contents

1 Introduction 1

1.1 Formal and Natural Languages . . . . . . . . . . . . . . . . . 2

1.2 LT and Functional Programming . . . . . . . . . . . . . . . . 2

1.2.1 A strong, polymorphic type system . . . . . . . . . . . 3

1.2.2 Higher-order functions . . . . . . . . . . . . . . . . . . 5

1.2.3 Class system . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 BNF Converter . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Technical overview of BNFC . . . . . . . . . . . . . . 7

1.4 Functional Morphology . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Technical overview of FM . . . . . . . . . . . . . . . . 9

1.5 Current States of the Work . . . . . . . . . . . . . . . . . . . 9

1.6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Paper I: Labelled BNF 14

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 The LBNF Grammar Formalism . . . . . . . . . . . . . . . . 16

2.2.1 LBNF in a nutshell . . . . . . . . . . . . . . . . . . . . 16

2.2.2 LBNF conventions . . . . . . . . . . . . . . . . . . . . 17

2.2.3 The type-correctness of LBNF rules . . . . . . . . . . 20

2.3 LBNF Pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Comment pragmas . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Internal pragmas . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Token pragmas . . . . . . . . . . . . . . . . . . . . . . 23

2.3.4 Entry point pragmas . . . . . . . . . . . . . . . . . . . 23

2.4 BNF Converter code generation . . . . . . . . . . . . . . . . . 23

2.4.1 The files . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 Example: JavaletteLight.cf . . . . . . . . . . . . . 24

2.4.3 An optimization: left-recursive lists . . . . . . . . . . . 29

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.2 Well-behaved languages . . . . . . . . . . . . . . . . . 31

2.5.3 Related work . . . . . . . . . . . . . . . . . . . . . . . 32

V



2.5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Appendix: LBNF Specification . . . . . . . . . . . . . . . . . 33

3 Paper II: BNF Converter 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 The LBNF Grammar Formalism . . . . . . . . . . . . . . . . 40

3.2.1 Rules and Labels . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Lexer Definitions . . . . . . . . . . . . . . . . . . . . . 40
3.2.3 Abstract Syntax Conventions . . . . . . . . . . . . . . 41
3.2.4 Example Grammar . . . . . . . . . . . . . . . . . . . . 43

3.3 Haskell Code Generation . . . . . . . . . . . . . . . . . . . . . 43
3.4 Java Code Generation . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Java 1.5 Generation . . . . . . . . . . . . . . . . . . . . . . . 50
3.6 C++ Code Generation . . . . . . . . . . . . . . . . . . . . . . 50
3.7 C Code Generation . . . . . . . . . . . . . . . . . . . . . . . . 50
3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . 54

4 Paper III: Demonstration Abstract: BNF Converter 58
4.1 Demo overview . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Goals and limits . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3 An example grammar . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Compiling a grammar . . . . . . . . . . . . . . . . . . . . . . 60
4.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 When to use BNFC . . . . . . . . . . . . . . . . . . . . . . . 61
4.7 Bio section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Paper IV: Functional Morphology 63
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Implementations of Morphology . . . . . . . . . . . . . . . . . 65

5.3.1 Finite State Technology . . . . . . . . . . . . . . . . . 65
5.3.2 The Zen Linguistic Toolkit . . . . . . . . . . . . . . . 66
5.3.3 Grammatical Framework . . . . . . . . . . . . . . . . 66

5.4 Functional morphology . . . . . . . . . . . . . . . . . . . . . . 67
5.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 67
5.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.3 System overview . . . . . . . . . . . . . . . . . . . . . 68
5.4.4 Technical details . . . . . . . . . . . . . . . . . . . . . 69
5.4.5 Trie analyzer . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.6 Composite forms . . . . . . . . . . . . . . . . . . . . . 83

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

VI



Chapter 1

Introduction

The work described in this thesis is in the area of Language Technology. A
possible definition of Language Technology, abbreviated LT, is the research
field that studies computer-aided processing of languages. LT can be further
divided into (Natural) Language Processing and Speech Technology, where
Language Processing studies symbolic languages (written text, transcribed
speech etc), and Speech Technology studies speech in the shape of an au-
dio signal. The difference in these two subfields is in reality not as clearly
distinct as the above definition implies; there is a great deal of overlap.
The term “Language Technology” will be used in this thesis without fur-
ther distinction. A more in-depth introduction to the Language Technology
field can be found in Jurafsky’s and Martin’s book “Speech and Language
Processing” [9].

Language technologists work in the area in between of Computing Sci-
ence and Linguistics, which gives rise to an interesting cross-fertilization
of ideas. This thesis provides a demonstration of this. The work on the
BNF Converter, a tool for defining formal languages, can be viewed as ideas
brought from Linguistics into Computing Science. Many compiler tools de-
veloped within Computing Science aim at strong expressiveness, often at
the expense of declarativity. In Linguistics, on the other hand, there exists
a tradition to hold declarativity before expressiveness. These ideas have
been brought into the BNF Converter tool, where some requirements on the
target language enable a declarative source format. The work on Functional
Morphology, a toolkit for defining natural language morphologies, has in-
fluences from the other direction — ideas from the functional programming
community are brought into Linguistics.

The LT group at Chalmers is working at the interface of natural and
formal languages. The group has a strong connection to the area of Compiler
Construction, which differs from many other LT groups that have a more
traditional affinity to Artificial Intelligence. The connection to the Compiler
Construction field is obvious in this thesis, in particular in the work on BNF

1



Converter.

The main tool of Chalmer’s LT group is Grammatical Framework (GF)
[17, 15], a multi-lingual grammar formalism based on type theory [11, 10].
Due to this formal approach, instead of a more statistical approach, the
initial idea was that only fragments of natural languages could be machine
translated, and the aim was exactness rather than full coverage.

This idea is still not completely incorrect, but the view has slightly
changed due to Functional Morphology, discussed in this thesis, and the
GF resource grammars [16], a collection of syntactic libraries, and the goal
is now more ambitious. In particular, Functional Morphology has shown
to be very productive where the coverage of a major part of a language’s
inflectional morphology is tractable. However, it is important to stress that
both morphologies in Functional Morphology and the resource grammars are
syntactic resources, not semantic resources, so complete machine translation
is still not considered feasible.

1.1 Formal and Natural Languages

The main theme of this thesis is computer-aided processing of languages
powered by functional programming. The languages considered are both
formal and natural. Natural languages are what most people think of when
they hear the word “language”, i.e. languages such as English, Spanish,
French, Chinese and Sanskrit.

Formal languages are a much simpler class of languages — artificial lan-
guages created for a specific purpose, such as programming languages or
mathematical languages.

The word processing is a vague term, so more precision may be in order.
Languages are represented in a computer as sequences of symbols or, more
technically, as strings, illustrated in figure 1.1. This string is analyzed into
some internal representation that reflects the information extracted from
the string. The reverse process may also be interesting — to synthesize the
internal representation into a string.

A more concrete example is machine translation between two languages,
where the source language, the language translated from, would be ana-
lyzed to produce the internal representation. Depending on the level of
sophistication of the machine translation, the internal representation may
undergo a sequence of transformations. Finally, the internal representation
is synthesized into the target language.

1.2 LT and Functional Programming

High-level programming languages, i.e. declarative languages, can be divided
into functional languages such as Lisp, ML and Haskell, and logic languages

2



Synthesis

Representation
Internal

String

Analysis

       String

Figure 1.1: Language Processing Overview

such as Prolog. Declarative languages have been used by language technol-
ogists since they came to existence.

The reasons for using declarative languages are many — quick prototyp-
ing; closeness to mathematical description and hence to linguistic models
influenced by mathematics; simple construction and manipulation of struc-
tured data.

Logic languages, in particular the programming language Prolog, have
been the prominent tool within LT. Some of the reasons for their popularity
are the fact that logic languages are founded on predicate logic, a popu-
lar formalism to describe the semantics of natural languages, and because
many implementations have the built-in grammar description language DCG
(Definite Clause Grammar) [13].

The foundation of functional programming is the Lambda Calculus [1],
a minimal, Turing-complete 1 language based solely on functions. The fo-
cus of this thesis is on typed functional languages, and the programming
language under consideration is Haskell [14]. One of the main themes in
this thesis is compiler construction and it is well known in the functional
programming community that one of the strong applications of functional
programming is compiler construction. Some of the features of Haskell that
are essential in this work are described in the following sections. A more
in-depth motivation of functional programming is given in Hughes’ article
Why Functional Programming Matters [8].

1.2.1 A strong, polymorphic type system

There is a tradition in LT of using untyped or weakly typed languages.
Functional Morphology and Grammatical Framework can be considered as
evidence that the use of types in a LT application can increase productivity
and reduce the amount of errors. The types in Functional Morphology
ensure, for example, that the inflectional parameter type of a noun is not
by accident constructed with parameters from another word class and that
all cases of a noun’s inflection table are actually defined.

An example of the use of types, here with algebraic data types, is the
description of the inflectional parameters of Swedish nouns. There are three
parameters: number, case and species. Three new types are introduced —
Number, Case and Species — and the elements of the types are enumerated.

1All computable functions can be expressed and calculated in Lambda Calculus

3



The type NounForm is just the composition of the three parameters to form
one inflection type.

data Number = Singular | Plural

data Case = Nominative | Genitive

data Species = Indefinite | Definite

data NounForm = NF Number Case Species

As a next step, the inflection table of nouns in the first declension is
defined as a function decl1. The function takes as the first argument a
lemma, as the second argument the parameters type, and as the result it
gives the inflected form. The function is essentially case analysis over the
parameters, and the result is constructed with the concatenation operator
(++) that concatenates two strings. The function mkCase describes the case
inflection.

decl1 :: String -> NounForm -> String

decl1 apa (NF number case’ species) =

mkCase case’ $

case number of

Singular -> case species of

Definite -> apa ++ "n"

Indefinite -> apa

Plural -> case species of

Definite -> (tk 1 apa) ++ "orna"

Indefinite -> (tk 1 apa) ++ "or"

mkCase :: Case -> String -> String

mkCase case’ word = case case’ of

Nominative -> word

Genitive ->

if (last word == ’s’) then word

else word ++ "s"

The inflection table of the words flicka and apa can be defined with the
following definitions.

flicka = decl1 "flicka"

apa = decl1 "apa"

flicka and apa are now functions that, given a parameters type, return
a string, e.g. flicka (NF Plural Genitive Definite) = "flickornas".

4



1.2.2 Higher-order functions

Higher-order functions can take functions as arguments and return a func-
tion as a result of a computation, that is, functions are first-class values.

A classic example of a higher-order function is the map function, that
takes any function from a to b, and a list of a:s ([a]), and applies that
function to all elements in the list of a:s, to receive a list of b:s ([b]). The
variables a and b are type variables — a and b can be replaced by any type
— and because of this, map is said to be a polymorphic function.

map :: (a -> b) -> [a] -> [b]

map f (x:xs) = f x : map f xs

The ability to program on more than one abstraction layer gives perfect
support to linguistic abstractions. An example of this is the exception han-
dling in Functional Morphology, described in chapter 5, where higher-order
functions are used to handle exceptional linguistic phenomena.

The exception handling of Functional Morphology can be demonstrated
through the Latin word vis (Eng. violence, force), that inflects in the same
way as the word hostis (Eng. enemy), with the exception of the vocative,
genitive, dative case in singular, which are missing. This would be described
with the following function, where the higher-order function is missing,
written in infix notation:

vis :: Noun

vis =

(hostisParadigm "vis") ’missing’

[

NounForm Singular c | c <- [Vocative, Genitive, Dative]

]

1.2.3 Class system

The class system of Haskell provides overloading. Overloading means that
the definition of a function symbol is defined by its type. This is static typing
— everything is decided at compile-time, not runtime. The class system
provides a good abstraction mechanism, and is the driving machinery of
Functional Morphology.

An example from Functional Morphology is the Param class, that con-
tains the overloaded constant values, which every instance of that class
must define. The values constant is an enumeration of all objects in a
particular type a.

class Param a where

values :: [a]

5



A fundamental function in Functional Morphology is table, which trans-
forms a function into an (inflection) table. The function can be read as: if a
function is from a to b, where a is an instance of the class Param, then a list
of pairs that constitute the table can be generated by picking out objects
from values, one by one, and applying the input function to every object.

table :: Param a => (a -> b) -> [(a,b)]

table f = [(a, f a) | a <- values]

If the NounForm type is made an instance of the Param class, then an
inflection table for nouns can be generated with the function nounTable

below, where the function table is used.

instance NounForm where

values = -- details omitted

nounTable :: (NounForm -> String) -> [(NounForm, String)]

nounTable noun = table noun

nounTable only specializes the types of the more general function table.
Every occurence of nounTable can be replaced by table.

1.3 BNF Converter

The three papers in chapter 2, 3 and 4 describe a tool for defining formal
languages, in particular programming languages. The idea was to construct
a grammar tool for defining formal languages that was as declarative as
possible, and from this tool generate necessary components for the front-
end of the target language, such as a lexical analyzer and a parser.

BNF Converter, abbreviated BNFC, started as an experimental study
into what extent the GF tool could be used as a compiler front-end genera-
tor. Though it was possible, it was soon realized that some extra notation
was necessary to get a front-end comparable to what a programmer would
normally expect. For example, comments are usually something treated as
white-spaces, instead of having them represented in the abstract syntax,
and this requires some special notation. Hence, the BNF Converter tool
was born.

Since the paper in chapter 2 was written, substantial development has
been performed on BNFC, partly described in the technical report of BNFC
in chapter 3. In particular, multi-lingual support has been added and, due
to the declarative nature of BNFC and that the back-end tools used by
BNFC have similar syntax and functionality, this was a relatively easy task.
Support has been added for C, C++, Java 1.4 and Java 1.5.

6



1.3.1 Technical overview of BNFC

The grammar format of BNFC is LBNF, an abbreviation of Labelled BNF.
The files that are generated in all target languages by BNFC from a LBNF
grammar are: an abstract syntax, a lexer, a parser, a pretty-printer, a case-
skeleton that traverses the abstract syntax, a test bench that puts everything
together in an executable and language documentation.

The approach taken in BNFC is to generate code for a set of tools, e.g.
parser and lexer generators. This approach has a couple of advantages —
first it avoids redoing work already done, such as implementing parser al-
gorithms, and therefore saves a lot of work. However, there is yet another,
more important, motivation: that of maintenance. Bug fixes and develop-
ment come for free by using existing tools.

The multilinguality of BNFC provides a convenient way of data transfer
between different programming languages. A language that describes the
data is created in BNFC. The transfer takes place by pretty-printing the
data from a program written in one language, which is later parsed by a
program written in another language.

Requirements of BNF Converter

Some requirements are put on the languages implemented in BNFC, to be
able to generate all the mentioned modules. All requirements follow the
guidelines of any modern compiler construction handbook, and most of to-
day’s programming languages have at least a well-defined subset that fulfills
all requirements. The requirements are:

The modules in the front-end are sequentialized. This means that every
task, such as lexing or parsing, is performed as a separate step — the result
of one process is fed into the next step in the process.

The lexical structure can be described by a regular expression. This may
seem trivially fulfilled because the engine in a lexer is a finite state automa-
ton, which is equivalent with the input regular expression. It is, however,
possible to execute arbitrary code in the semantic action of a lexer rule, so
that non-regular phenomena such as nested comments can be handled by
the lexer.

The only semantic action allowed in the parser is the building of abstract
syntax trees. Even though this is highly recommended in the literature, some
front-end implementations also perform additional tasks in the parser, such
as type checking.

White spaces carry no meaning, except, possibly, as layout information.
That is, white spaces can safely be removed in the tokenization process.

The grammar must, in most cases, be LALR(1) parsable. This require-
ment is actually not something inherent in BNFC, but rather in the tools
that are used to produce the parser. For example, the Happy parser gener-

7



ator has been generalized with the Tomita algorithm [18, 12] so that it will
produce a forest of parse trees, instead of a single tree.

1.4 Functional Morphology

A toolkit for defining natural language morphologies, called Functional Mor-
phology (FM), is described in chapter 5. The goal of Functional Morphology
is to supply a convenient way of defining full-scale morphologies. The ap-
proach is based on Hockett’s word-and-paradigm model [5], which essentially
is the idea that a morphology is defined as a list of dictionary forms, or lem-
mas, and each lemma has a pointer to its corresponding inflection table.

A morphology implementation is a digital representation of a particular
linguistic resource. Bird and Simon [3] lists a number of problems with
digital representation of linguistic resources. In particular, they point out
that:

Funded documentation projects are usually tied to software ver-
sions, file formats, and system configurations having a lifespan
of three to five years.

FM provides a couple of solutions to this problem. The source code is
open source, so the internal behavior of the system will, at least in theory,
be accessible long after a compiler for the language is no longer maintained.
But a more important point is that FM can generate a set of formats, some
which aim for proprietary systems such as XFST [2], and some of which are
of a more general format, such as full-form lexicon. These properties of FM
ensure that the lifetime of a resource is extended significantly.

One of the main goals of FM was to develop a methodology which is
powerful enough to enable the description of a multiple of languages’ mor-
phologies, but simple enough to enable a unified back-end to the method-
ology, so that morphology implementations can share translators, analyzer
and synthesizer.

The standard practice today when implementing a morphology is to use
finite state technology. The task of convincing linguists to use FM instead
of, for example, XFST involved two considerations. First, to minimize the
learning curve in the transition to FM, the aim was that minimal knowledge
of functional programming would be required to use FM. Secondly, source
code for finite state tools had to be generated, so that no work would be
lost if a linguist decided to switch back to finite state technology.

Yet another goal was to embed the methodology in a full programming
language, instead of developing a new language, i.e. to create a domain-
specific embedded language [6, 7] in Haskell. This gives a lot for free, such
as all normal programming constructs, and that the maintenance of the
language is mainly done by Haskell’s compiler development team.

8



There are also some drawbacks of using an embedded domain-specific
language, such the inability to perform task-specific optimizations.

The power of a full programming language enables computations over
complex data structures. This is important when a language with a compli-
cated morphology is implemented, such as Sanskrit or Arabic.

Languages can be said to be typed — they are usually analyzed into
exact categorizations, such as part of speech and grammatical features —
and in FM this is directly reflected in the description.

1.4.1 Technical overview of FM

As mentioned previously, FM describes a morphology with the lemmas of
the target language augmented with a pointer to its corresponding inflection
table, or with the technical term, its paradigm.

The paradigms in FM are described with finite functions, which is later
translated into tables. The lexicon consists of a listing of the lemmas ap-
plied to their corresponding paradigm function. The pointer is the function
symbol, and the inflection table is the evaluation of the application.

A morphology implementer using FM has to provide three language-
specific components:

• a type system that defines all word classes and the parameters be-
longing to them;

• an inflection machinery that defines all paradigms for all word
classes;

• a lexicon that lists all words in the target language with their paradigms.

The translation of a morphology into the language-independent part of
FM is done through type classes and is described in more detail in chapter
5.

1.5 Current States of the Work

BNF Converter is now coming of age and is being widely used. It is has
been used as a teaching tool and for development of full-scale languages. It
is also now part of the testing distribution of Debian Linux. The restrictions
posed on the languages are, by many, considered to be small compared with
the gains that the tool provides — shorter development time, simplified
maintenance and reduced code size.

Functional morphology has been developed under a period of several
years, and has now reached a stable situation. The goal of creating a tool
accessible to linguists with no previous experience of functional program-
ming has been demonstrated by the master students that successfully used

9



FM and developed two substantial morphologies with no or limited experi-
ence of Haskell.

When a morphology has already been defined, and the task is only lexi-
cographic, i.e. to extend the lexicon, FM can be used without any knowledge
of functional programming. The only requirement is that the user knows
the target language well enough. FM has been used in a first-year course,
where the students were supposed to extend the lexicon and, without any
knowledge of Haskell, they successfully extended the lexicon with hundreds
of lemmas.

1.6 Future Work

BNF Converter and FM have evolved into mature systems and will be sub-
ject of continued development and maintenance. However, in the next stages
of the project the focus will on other areas.

The particular way of representing the morphology in FM, lemmas paired
with their paradigms, opens up doors for lexicon extraction; if a lemma and
its paradigm are successfully identified in a corpus, the FM machinery can
generate the full inflection table, with word forms that possibly do not exist
in the corpus.

An simple example is the first declension paradigm in Swedish.

decl1: ap/a (apor|apors|aporna|apornas) 3

To identify a lemma blurga in a corpus as a noun in the first declension,
we require that at least one of the forms blurgor, blurgors, blurgorna and
blurgornas are present. The number at the end of the paradigm descrip-
tion imposes a minimal length requirement on the lemmas — this to avoid
spurious findings.

Lexicon extraction is a difficult problem, e.g. paradigms can be overlap-
ping or undistinguishable, and knowledge about syntax or even semantics
may be necessary to identify a particular paradigm. However, our approach
still saves a lot of work: one who knows Latin can quite quickly decide if a
verb is in, for example, the first conjugation, by seeing the first few word
forms. This could be contrasted with word form based extraction, where
the, probably incomplete, inflection table of a lemma would be expanded
and mixed with other word forms. The verification of a word form based
extraction is a much more time-consuming task.

An experimental tool for extraction has been developed, is available at
the FM homepage [4], and some successful experiments have been performed.
In the near future we will analyze and document this approach to lexicon ex-
traction. One interesting direction is to use existing morphology implemen-
tations to extract automatically a lemma-based bilingual dictionary from
a text that exists in both languages. The idea is simple: to align words

10



according to their part of speech and common grammatical features, and to
pair their corresponding lemmas.

1.7 Contributions

The research contributions of the author of the thesis are the following:

• development of the major part of the Haskell generation, the first
target language of BNF Converter. The Java, C and C++ generation
was developed by Michael Pellauer and Java 1.5 by Björn Bringert;

• the further development and implementation in Haskell of the mor-
phological analysis algorithm described by Huet;

• development of the Functional Morphology library to achieve a lan-
guage independent framework;

• development of the Latin morphology and parts of the Swedish mor-
phology in Functional Morphology;

• the main author of the papers in chapters 2 and 5, where Aarne Ranta
co-authored;

• A co-author of the papers in chapters 3, where Michael Pellauer was
the main author, and 4, where Aarne Ranta was the main author.

11



Bibliography

[1] H. Barendregt. The Lambda Calculus. Its Syntax and Semantics. North-
Holland, 1981.

[2] K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Pub-
lications, Stanford University, United States,, 2003.

[3] S. Bird and G. Simons. Seven dimensions of portability for language
documentation and description. Language, 79:557–582, 2003.

[4] M. Forsberg and A. Ranta. Functional morphology.
http://www.cs.chalmers.se/~markus/FM, 2004.

[5] C. F. Hockett. Two models of grammatical description. Word, 10:210–
234, 1954.

[6] P. Hudak. Building domain-specific embedded languages. ACM Com-
puting Surveys, 28(4), 1996.

[7] P. Hudak. Modular domain specific languages and tools. In P. Devanbu
and J. Poulin, editors, Proceedings: Fifth International Conference on
Software Reuse, pages 134–142. IEEE Computer Society Press, 1998.

[8] J. Hughes. Why functional programming matters. Computer Journal,
32(2):98–107, 1989.

[9] D. Jurafsky and J. H. Martin. Speech and Language Processing, An in-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Prentice Hall, Upper Saddle River, New Jersey
07458, 2000.

[10] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.

[11] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-
Lf’s Type Theory. An Introduction. Oxford University Press, 1990.

[12] Paul Callaghan and students. Project Description, 2004.
http://www.dur.ac.uk/computer.science/ug/mods/y3proj/proj01/pcc2.htm.

12



[13] F. Pereira and D. Warren. Definite clause grammars for language
analysis—a survey of the formalism and a comparison with augmented
transition networks. Artificial Intelligence, 13:231–278, 1980.

[14] S. Peyton Jones and J. Hughes. Report on the Programming Language
Haskell 98, a Non-strict, Purely Functional Language. Available from
http://www.haskell.org, February 1999.

[15] A. Ranta. Grammatical Framework Homepage, 2000–2004.
www.cs.chalmers.se/~aarne/GF/.

[16] A. Ranta. GF Resource grammar site. Program and documentation,
http://www.cs.chalmers.se/~aarne/GF/lib/resource, 2004.

[17] A. Ranta. Grammatical Framework: A Type-theoretical Grammar For-
malism. The Journal of Functional Programming, 14(2):145–189, 2004.

[18] M. Tomita. Efficient Parsing of Natural Language. Kluwer Academic
Press, 1986.

13



Chapter 2

Paper I: Labelled BNF

A High-Level Formalism for Defining Well-Behaved
Programming Languages

Markus Forsberg and Aarne Ranta
Department of Computing Science

Chalmers University of Technology and the University of
Gothenburg

SE-412 96 Gothenburg, Sweden
{markus,aarne}@cs.chalmers.se

abstract

This paper introduces the grammar formalism Labelled BNF (LBNF), and
the compiler construction tool BNF Converter. Given a grammar written
in LBNF, the BNF Converter produces a complete compiler front end (up
to, but excluding, type checking), i.e. a lexer, a parser, and an abstract
syntax definition. Moreover, it produces a pretty-printer and a language
specification in LATEX, as well as a template file for the compiler back end.

A language specification in LBNF is completely declarative and therefore
portable. It reduces dramatically the effort of implementing a language. The
price to pay is that the language must be “well-behaved”, i.e. that its lexical
structure must be describable by a regular expression and its syntax by a
context-free grammar.

Keywords

compiler construction, parser generator, grammar, labelled BNF, abstract
syntax, pretty printer, document automation

14



2.1 Introduction

This paper defends an old idea: a programming language is defined by a
BNF grammar [13]. This idea is usually not followed for two reasons. One
reason is that a language may require more powerful methods (consider, for
example, languages with layout rules). The other reason is that, when pars-
ing, one wants to do other things already (such as type checking etc). Hence
the idea of extending pure BNF with semantic actions, written in a general-
purpose programming language. However, such actions destroy declarativity
and portability. To describe the language, it becomes necessary to write a
separate document, since the BNF no longer defines the language. Also
the problem of synchronization arises: how to guarantee that the different
modules—the lexer, the parser, and the document, etc.—describe the same
language and that they fit together?

The idea in LBNF is to use BNF, with construction of syntax trees as
the only semantic action. This gives a unique source for all language-related
modules, and it also solves the problem of synchronization. Thereby it
dramatically reduces the effort of implementing a new language. Generating
syntax trees instead of using more complex semantic actions is a natural
phase of multi-phase compilation, which is recommended by most modern-
day text books about compiler construction (e.g. Appel[1]). BNF grammars
are an ingredient of all modern compilers. When designing LBNF, we tried
to keep it so simple and intuitive that it can be learnt in a few minutes by
anyone who knows ordinary BNF.

Of course, the are some drawbacks with our approach. Not all lan-
guages can be completely defined, although surprisingly many can (see Sec-
tion 2.5.1). Another drawback is that the modules generated are not quite
as good as handwritten. But this is a general problem when generating code
instead of handwriting it: a problem shared by all compilers, including the
standard parser and lexer generation tools.

To use LBNF descriptions as implementations, we have built the BNF
Converter [5]. Given an input LBNF grammar, the BNF Converter produces
a lexer, a parser, and an abstract syntax definition. Moreover, it produces
a pretty-printer and a language specification in LATEX. Since all this is
generated from a single source, we can be sure that the documentation
corresponds to the actual language, and that the lexer, parser and abstract
syntax fit seamlessly together.

The BNF Converter is written in the functional programming language
Haskell[15], and its target languages are presently Haskell, the associated
compiler tools Happy[11] and Alex[3], and LATEX. Happy is a parser gener-
ator tool, similar to YACC[8], which from a BNF-like description builds an
LALR(1) parser. Alex is a lexer generator tool, similar to Lex[10], which
converts a regular expression into a finite-state automaton. Over the years,
Haskell and these tools have proven to be excellent devices for compiler con-

15



struction, to a large extent because of Haskell’s algebraic data types and a
convenient method of syntax-directed translation via pattern matching; yet
they do not quite remove the need for repetitive and low-level coding. The
BNF Converter can be seen as a high-level front end to these tools. How-
ever, due to its declarative nature, LBNF does not crucially depend on the
target language, and it is therefore possible to redirect the BNF Converter
as a front end to another set of compiler tools. This has in fact recently
been done for Java, CUP [7], and JLex [4]1. The only essential difference
between Haskell/Happy/Alex and Java/CUP/JLex or C/YACC/Lex is the
target language included in the parser and lexer description.

2.2 The LBNF Grammar Formalism

As the first example of LBNF, consider a triple of rules defining addition
expressions with “1”:

EPlus. Exp ::= Exp "+" Num ;

ENum. Exp ::= Num ;

NOne. Num ::= "1" ;

Apart from the labels, EPlus, ENum, and NOne, the rules are ordinary BNF
rules, with terminal symbols enclosed in double quotes and nonterminals
written without quotes. The labels serve as constructors for syntax trees.

From an LBNF grammar, the BNF Converter extracts an abstract syntax
and a concrete syntax. The abstract syntax is implemented, in Haskell, as
a system of datatype definitions

data Exp = EPlus Exp Exp | ENum Num

data Num = NOne

(For other languages, including C and Java, an equivalent representation can
be given in the same way as in the Zephyr abstract syntax specification tool
[2]). The concrete syntax is implemented by the lexer, parser and pretty-
printer algorithms, which are defined in other generated program modules.

2.2.1 LBNF in a nutshell

Briefly, an LBNF grammar is a BNF grammar where every rule is given a
label. The label is used for constructing a syntax tree whose subtrees are
given by the nonterminals of the rule, in the same order.

More formally, an LBNF grammar consists of a collection of rules, which
have the following form (expressed by a regular expression; Appendix A
gives a complete BNF definition of the notation):

1Work by Michael Pellauer at Chalmers

16



Ident ”.” Ident ”::=” (Ident | String)* ”;” ;

The first identifier is the rule label, followed by the value category. On
the right-hand side of the production arrow (::=) is the list of production
items. An item is either a quoted string (terminal) or a category symbol
(non-terminal). A rule whose value category is C is also called a production
for C.

Identifiers, that is, rule names and category symbols, can be chosen ad
libitum, with the restrictions imposed by the target language. To satisfy
Haskell, and C and Java as well, the following rule is imposed

An identifier is a nonempty sequence of letters, starting with a
capital letter.

LBNF is clearly sufficient for defining any context-free language. How-
ever, the abstract syntax that it generates may often become too detailed.
Without destroying the declarative nature and the simplicity of LBNF, we
have added to it four ad hoc conventions, which are described in the following
subsection.

2.2.2 LBNF conventions

Predefined basic types

The first convention are predefined basic types. Basic types, such as integer
and character, can of course be defined in a labelled BNF, for example:

Char_a. Char ::= "a" ;

Char_b. Char ::= "b" ;

This is, however, cumbersome and inefficient. Instead, we have decided
to extend our formalism with predefined basic types, and represent their
grammar as a part of lexical structure. These types are the following, as
defined by LBNF regular expressions (see 2.3.3 for the regular expression
syntax):

Integer of integers, defined
digit+

Double of floating point numbers, defined
digit+ ’.’ digit+ (’e’ ’-’? digit+)?

Char of characters (in single quotes), defined
’\’’ ((char - ["’\\"]) | (’\\’ ["’\\nt"])) ’\’’

String of strings (in double quotes), defined
’"’ ((char - ["\"\\"]) | (’\\’ ["\"\\nt"]))* ’"’

Ident of identifiers, defined
letter (letter | digit | ’_’ | ’\’’)*

17



In the abstract syntax, these types are represented as corresponding types.
In Haskell, we also need to define a new type for Ident:

newtype Ident = Ident String

For example, the LBNF rules

EVar. Exp ::= Ident ;

EInt. Exp ::= Integer ;

EStr. Exp ::= String ;

generate the abstract syntax

data Exp = EVar Ident | EInt Integer | EStr String

where Integer and String have their standard Haskell meanings. The
lexer only produces the high-precision variants of integers and floats; authors
of applications can truncate these numbers later if they want to have low
precision instead.

Predefined categories may not have explicit productions in the grammar,
since this would violate their predefined meanings.

Semantic dummies

Sometimes the concrete syntax of a language includes rules that make no
semantic difference. An example is a BNF rule making the parser accept
extra semicolons after statements:

Stm ::= Stm ";" ;

As this rule is semantically dummy, we do not want to represent it by a
constructors in the abstract syntax. Instead, we introduce the following
convention:

A rule label can be an underscore , which does not add anything
to the syntax tree.

Thus we can write the following rule in LBNF:

_ . Stm ::= Stm ";" ;

Underscores are of course only meaningful as replacements of one-argument
constructors where the value type is the same as the argument type. Se-
mantic dummies leave no trace in the pretty-printer. Thus, for instance, the
pretty-printer “normalizes away” extra semicolons.

18



Precedence levels

A common idiom in (ordinary) BNF is to use indexed variants of categories
to express precedence levels:

Exp3 ::= Integer ;

Exp2 ::= Exp2 "*" Exp3 ;

Exp ::= Exp "+" Exp2 ;

Exp ::= Exp2 ;

Exp2 ::= Exp3 ;

Exp3 ::= "(" Exp ")" ;

The precedence level regulates the order of parsing, including associativity.
Parentheses lift an expression of any level to the highest level.

A straightforward labelling of the above rules creates a grammar that
does have the desired recognition behavior, as the abstract syntax is clut-
tered with type distinctions (between Exp, Exp2, and Exp3) and constructors
(from the last three rules) with no semantic content. The BNF Converter so-
lution is to distinguish among category symbols those that are just indexed
variants of each other:

A category symbol can end with an integer index (i.e. a sequence
of digits), and is then treated as a type synonym of the corre-
sponding non-indexed symbol.

Thus Exp2 and Exp3 are indexed variants of Exp.

Transitions between indexed variants are semantically dummy, and we
do not want to represent them by constructors in the abstract syntax. To
do this, we extend the use of underscores to indexed variants. The example
grammar above can now be labelled as follows:

EInt. Exp3 ::= Integer ;

ETimes. Exp2 ::= Exp2 "*" Exp3 ;

EPlus. Exp ::= Exp "+" Exp2 ;

_. Exp ::= Exp2 ;

_. Exp2 ::= Exp3 ;

_. Exp3 ::= "(" Exp ")" ;

Thus the datatype of expressions becomes simply

data Exp = EInt Integer | ETimes Exp Exp | EPlus Exp Exp

and the syntax tree for 2*(3+1) is

ETimes (EInt 2) (EPlus (EInt 3) (EInt 1))

19



Indexed categories can be used for other purposes than precedence, since
the only thing we can formally check is the type skeleton (see the section
2.2.3). The parser does not need to know that the indices mean precedence,
but only that indexed variants have values of the same type. The pretty-
printer, however, assumes that indexed categories are used for precedence,
and may produce strange results if they are used in some other way.

Polymorphic lists

It is easy to define monomorphic list types in LBNF:

NilDef. ListDef ::= ;

ConsDef. ListDef ::= Def ";" ListDef ;

However, compiler writers in languages like Haskell may want to use pre-
defined polymorphic lists, because of the language support for these con-
structs. LBNF permits the use of Haskell’s list constructors as labels, and
list brackets in category names:

[]. [Def] ::= ;

(:). [Def] ::= Def ";" [Def] ;

As the general rule, we have

[C], the category of lists of type C,

[] and (:), the Nil and Cons rule labels,

(:[]), the rule label for one-element lists.

The third rule label is used to place an at-least-one restriction, but also to
permit special treatment of one-element lists in the concrete syntax.

In the LATEX document (for stylistic reasons) and in the Happy file (for
syntactic reasons), the category name [X] is replaced by ListX. In order for
this not to cause clashes, ListX may not be at the same time used explicitly
in the grammar.

The list category constructor can be iterated: [[X]], [[[X]]], etc be-
have in the expected way.

The list notation can also be seen as a variant of the Kleene star and
plus, and hence as an ingredient from Extended BNF.

2.2.3 The type-correctness of LBNF rules

It is customary in parser generators to delegate the checking of certain er-
rors to the target language. For instance, a Happy source file that Happy
processes without complaints can still produce a Haskell file that is rejected
by Haskell. In the same way, the BNF converter delegates some checking to
Happy and Haskell (for instance, the parser conflict check). However, since

20



it is always the easiest for the programmer to understand error messages
related to the source, the BNF Converter performs some checks, which are
mostly connected with the sanity of the abstract syntax.

The type checker uses a notion of the category skeleton of a rule, which
is a pair

(C,A . . . B)

where C is the unindexed left-hand-side non-terminal and A . . . B is the
sequence of unindexed right-hand-side non-terminals of the rule. In other
words, the category skeleton of a rule expresses the abstract-syntax type of
the semantic action associated to that rule.

We also need the notions of a regular category and a regular rule label.
Briefly, regular labels and categories are the user-defined ones. More for-
mally, a regular category is none of [C],Integer, Double, Char, String
and Ident. A regular rule label is none of , [], (:), and (:[]).

The type checking rules are now the following:

A rule labelled by must have a category skeleton of form (C,C).

A rule labelled by [] must have a category skeleton of form
([C], ).

A rule labelled by (:) must have a category skeleton of form
([C], C[C]).

A rule labelled by (:[]) must have a category skeleton of form
([C], C).

Only regular categories may have productions with regular rule
labels.

Every regular category occurring in the grammar must have at
least one production with a regular rule label.

All rules with the same regular rule label must have the same
category skeleton.

The second-last rule corresponds to the absence of empty data types in
Haskell. The last rule could be strengthened so as to require that all regular
rule labels be unique: this is needed to guarantee error-free pretty-printing.
Violating this strengthened rule currently generates only a warning, not a
type error.

2.3 LBNF Pragmas

Even well-behaved languages have features that cannot be expressed nat-
urally in its BNF grammar. To take care of them, while preserving the
single-source nature of the BNF Converter, we extend the notation with
what we call pragmas. All these pragmas are completely declarative, and
the pragmas are also reflected in the documentation.

21



2.3.1 Comment pragmas

The first pragma tells what kinds of comments the language has. Normally
we do not want comments to appear in the abstract syntax, but treat them in
the lexical analysis. The comment pragma instructs the lexer generator (and
the document generator!) to treat certain pieces of text as comments and
thus to ignore them (except for their contribution to the position information
used in parser error messages).

The simplest solution to the comment problem would be to use some
default comments that are hard-coded into the system, e.g. Haskell’s com-
ments. But this definition can hardly be stated as a condition for a language
to be well-behaved, and we could not even define C or Java or ML then. So
we have added a comment pragma, whose regular-expression syntax is

”comment” String String? ”;”

The first string tells how a comment begins. The second, optional, string
marks the end of a comment: if it is not given, then the comment expects a
newline to end. For instance, to describe the Haskell comment convention,
we write the following lines in our LBNF source file:

comment "--" ;

comment "{-" "-}" ;

Since comments are treated in the lexical analyzer, they must be recognized
by a finite state automaton. This excludes the use of nested comments unless
defined in the grammar itself. Discarding nested comments is one aspect of
what we call well-behaved languages.

The length of comment end markers is restricted to two characters, due
to the complexities in the lexer caused by longer end markers.

2.3.2 Internal pragmas

Sometimes we want to include in the abstract syntax structures that are
not part of the concrete syntax, and hence not parsable. They can be, for
instance, syntax trees that are produced by a type-annotating type checker.
Even though they are not parsable, we may want to pretty-print them, for
instance, in the type checker’s error messages. To define such an internal
constructor, we use a pragma

"internal" Rule ";"

where Rule is a normal LBNF rule. For instance,

internal EVarT. Exp ::= "(" Ident ":" Type ")";

introduces a type-annotated variant of a variable expression.

22



2.3.3 Token pragmas

The predefined lexical types are sufficient in most cases, but sometimes we
would like to have more control over the lexer. This is provided by token
pragmas. They use regular expressions to define new token types.

If we, for example, want to make a finer distinction for identifiers, a
distinction between lower- and upper-case letters, we can introduce two new
token types, UIdent and LIdent, as follows.

token UIdent (upper (letter | digit | ’\_’)*) ;

token LIdent (lower (letter | digit | ’\_’)*) ;

The regular expression syntax of LBNF is specified in the Appendix.
The abbreviations with strings in brackets need a word of explanation:

["abc7%"] denotes the union of the characters ’a’ ’b’ ’c’ ’7’ ’%’

{"abc7%"} denotes the sequence of the characters ’a’ ’b’ ’c’ ’7’ ’%’

The atomic expressions upper, lower, letter, and digit denote the charac-
ter classes suggested by their names (letters are isolatin1). The expression
char matches any character in the 8-bit ASCII range, and the “epsilon”
expression eps matches the empty string.2

2.3.4 Entry point pragmas

The BNF Converter generates, by default, a parser for every category in the
grammar. This is unnecessarily rich in most cases, and makes the parser
larger than needed. If the size of the parser becomes critical, the entry
points pragma enables the user to define which of the parsers are actually
exported:

entrypoints (Ident ",")* Ident ;

For instance, the following pragma defines Stm and Exp to be the only entry
points:

entrypoints Stm, Exp ;

2.4 BNF Converter code generation

2.4.1 The files

Given an LBNF source file Foo.cf, the BNF Converter generates the fol-
lowing files:

2If we want to describe full Java, we must extend the character set to Unicode. This
is currently not supported by Alex, however.

23



• AbsFoo.hs: The abstract syntax (Haskell source file)

• LexFoo.x: The lexer (Alex source file)

• ParFoo.y: The parser (Happy source file)

• PrintFoo.hs: The pretty printer (Haskell source file)

• SkelFoo.hs: The case Skeleton (Haskell source file)

• TestFoo.hs: A test bench file for the parser and pretty printer (Haskell
source file)

• DocFoo.tex: The language document (LATEXsource file)

• makefile: A makefile for the lexer, the parser, and the document

In addition to these files, the user needs the Alex runtime file Alex.hs and
the error monad definition file ErrM.hs, both included in the BNF Converter
distribution.

2.4.2 Example: JavaletteLight.cf

The following LBNF grammar defines a small C-like language, Javalette
Light3.

Fun. Prog ::= Typ Ident "(" ")" "{" [Stm] "}" ;

SDecl. Stm ::= Typ Ident ";" ;

SAss. Stm ::= Ident "=" Exp ";" ;

SIncr. Stm ::= Ident "++" ";" ;

SWhile. Stm ::= "while" "(" Exp ")" "{" [Stm] "}" ;

ELt. Exp0 ::= Exp1 "<" Exp1 ;

EPlus. Exp1 ::= Exp1 "+" Exp2 ;

ETimes. Exp2 ::= Exp2 "*" Exp3 ;

EVar. Exp3 ::= Ident ;

EInt. Exp3 ::= Integer ;

EDouble. Exp3 ::= Double ;

TInt. Typ ::= "int" ;

TDouble. Typ ::= "double" ;

[]. [Stm] ::= ;

(:). [Stm] ::= Stm [Stm] ;

-- coercions

_. Stm ::= Stm ";" ;

_. Exp ::= Exp0 ;

_. Exp0 ::= Exp1 ;

_. Exp1 ::= Exp2 ;

_. Exp2 ::= Exp3 ;

3It is a fragment of the language Javalette used at compiler construction courses at
Chalmers University

24



_. Exp3 ::= "(" Exp ")" ;

-- pragmas

internal ExpT. Exp ::= Typ Exp ;

comment "/*" "*/" ;

comment "//" ;

entrypoints Prog, Stm, Exp ;

The abstract syntax AbsJavaletteLight.hs

The abstract syntax of Javalette generated by the BNF Converter is essen-
tially what a Haskell programmer would write by hand:

data Prog =

Fun Typ Ident [Stm]

deriving (Eq,Show)

data Stm =

SDecl Typ Ident

| SAss Ident Exp

| SIncr Ident

| SWhile Exp [Stm]

deriving (Eq,Show)

data Exp =

ELt Exp Exp

| EPlus Exp Exp

| ETimes Exp Exp

| EVar Ident

| EInt Integer

| EDouble Double

| ExpT Typ Exp

deriving (Eq,Show)

data Typ =

TInt

| TDouble

deriving (Eq,Show)

The lexer LexJavaletteLight.x

The lexer file (in Alex) consists mostly of standard rules for literals and
identifiers, but has rules added for reserved words and symbols (i.e. terminals
occurring in the grammar) and for comments. Here is a fragment with the
definitions characteristic of Javalette.

{ %s = ^( | ^) | ^{ | ^} | ^; | ^= | ^+ ^+ | ^< | ^+ | ^*}

"tokens_lx"/"tokens_acts":-

<> ::= ^/^/ [.]* ^n

25



<> ::= ^/ ^* ([^u # ^*] | ^* [^u # ^/])* (^*)+ ^/

<> ::= ^w+

<pTSpec> ::= %s %{ pTSpec p = PT p . TS %}

<ident> ::= ^l ^i* %{ ident p = PT p . eitherResIdent TV %}

<int> ::= ^d+ %{ int p = PT p . TI %}

<double> ::= ^d+ ^. ^d+ (e (^-)? ^d+)? %{ double p = PT p . TD %}

eitherResIdent :: (String -> Tok) -> String -> Tok

eitherResIdent tv s = if isResWord s then (TS s) else (tv s) where

isResWord s = elem s ["double","int","while"]

The lexer file moreover defines the token type Tok used by the lexer and the
parser.

The parser ParJavaletteLight.y

The parser file (in Happy) has a large number of token definitions (which we
find it extremely valuable to generate automatically), followed by parsing
rules corresponding closely to the source BNF rules. Here is a fragment
containing examples of both parts:

%token

’(’ { PT _ (TS "(") }

’)’ { PT _ (TS ")") }

’double’ { PT _ (TS "double") }

’int’ { PT _ (TS "int") }

’while’ { PT _ (TS "while") }

L_integ { PT _ (TI $$) }

L_doubl { PT _ (TD $$) }

%%

Integer : L_integ { (read $1) :: Integer }

Double : L_doubl { (read $1) :: Double }

Stm :: { Stm }

Stm : Typ Ident ’;’ { SDecl $1 $2 }

| Ident ’=’ Exp ’;’ { SAss $1 $3 }

| Ident ’++’ ’;’ { SIncr $1 }

| ’while’ ’(’ Exp ’)’ ’{’ ListStm ’}’ { SWhile $3 (reverse $6) }

| Stm ’;’ { $1 }

Exp0 :: { Exp }

Exp0 : Exp1 ’<’ Exp1 { ELt $1 $3 }

| Exp1 { $1 }

The exported parsers have types of the following form, for any abstract
syntax type T,

26



[Tok] -> Err T

returning either a value of type T or an error message, using a simple error
monad. The input is a token list received from the lexer.

The pretty-printer PrintJavaletteLight.hs

The pretty-printer consists of a Haskell class Print with instances for all
generated datatypes, taking precedence into account. The class method prt
generates a list of strings for a syntax tree of any type.

instance Print Exp where

prt i e = case e of

ELt exp0 exp ->

prPrec i 0 (concat [prt 1 exp0 , ["<"] , prt 1 exp])

EPlus exp0 exp ->

prPrec i 1 (concat [prt 1 exp0 , ["+"] , prt 2 exp])

ETimes exp0 exp ->

prPrec i 2 (concat [prt 2 exp0 , ["*"] , prt 3 exp])

The list is then put in layout (identation, newlines) by a rendering function,
which is generated independently of the grammar, but written with easy
modification in mind.

The case skeleton SkelJavaletteLight.hs

The case skeleton can be used as a basis when defining the compiler back
end, e.g. type checker and code generator. The same skeleton is actually also
used in the pretty printer. The case branches in the skeleton are initialized
to show error messages saying that the case is undefined.

transExp :: Exp -> Result

transExp x = case x of

ELt exp0 exp -> failure x

EPlus exp0 exp -> failure x

ETimes exp0 exp -> failure x

The language document DocJavaletteLight.tex

We show the main parts of the generated JavaletteLight document in a
typeset form. The grammar symbols in the document are produced by
LATEX macros, with easy modification in mind.

The lexical structure of JavaletteLight

Identifiers

Identifiers 〈Ident 〉 are unquoted strings beginning with a letter, followed by
any combination of letters, digits, and the characters ’, reserved words
excluded.

27



Literals

Integer literals 〈Int 〉 are nonempty sequences of digits.

Double-precision float literals 〈Double 〉 have the structure indicated by the
regular expression 〈digit 〉 + ‘.’〈digit 〉 + (‘e’‘-’?〈digit 〉+)? i.e. two sequences
of digits separated by a decimal point, optionally followed by an unsigned
or negative exponent.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar.
Those reserved words that consist of non-letter characters are called sym-
bols, and they are treated in a different way from those that are similar to
identifiers. The lexer follows rules familiar from languages like Haskell, C,
and Java, including longest match and spacing conventions.

The reserved words used in JavaletteLight are the following:

double int while

The symbols used in JavaletteLight are the following:

( ) {
} ; =

++ < +
*

Comments

Single-line comments begin with //.
Multiple-line comments are enclosed with /* and */.

The syntactic structure of JavaletteLight

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production),
| (union) and ε (empty rule) belong to the BNF notation. All other symbols
are terminals.

〈Prog 〉 ::= 〈Typ 〉 〈Ident 〉 ( ) { 〈ListStm 〉 }

〈Stm 〉 ::= 〈Typ 〉 〈Ident 〉 ;
| 〈Ident 〉 = 〈Exp 〉 ;
| 〈Ident 〉 ++ ;
| while ( 〈Exp 〉 ) { 〈ListStm 〉 }
| 〈Stm 〉 ;

〈Exp0 〉 ::= 〈Exp1 〉 < 〈Exp1 〉
| 〈Exp1 〉

〈Exp1 〉 ::= 〈Exp1 〉 + 〈Exp2 〉
| 〈Exp2 〉

〈Exp2 〉 ::= 〈Exp2 〉 * 〈Exp3 〉
| 〈Exp3 〉

28



〈Exp3 〉 ::= 〈Ident 〉
| 〈Integer 〉
| 〈Double 〉
| ( 〈Exp 〉 )

〈ListStm 〉 ::= ε

| 〈Stm 〉 〈ListStm 〉

〈Exp 〉 ::= 〈Exp0 〉

〈Typ 〉 ::= int
| double

The makefile

The makefile is used to run Alex on the lexer, Happy on the parser, and
LATEX on the document, by simply typing make. The make clean command
removes the generated files.

The test bench file TestJavaletteLight.hs

The test bench file can be loaded in the Haskell interpreter hugs to run the
parser and the pretty-printer on terminal or file input. The test functions
display a syntax tree (or an error message) and the pretty-printer result
from the same tree.

2.4.3 An optimization: left-recursive lists

The BNF representation of lists is right-recursive, following Haskell’s list
conctructor. Right-recursive lists, however, are an inefficient way of parsing
lists in an LALR parser. The smart programmer would implement a pair of
rules such as JavaletteLight’s

[]. [Stm] ::= ;

(:). [Stm] ::= Stm [Stm] ;

not in the direct way,

ListStm : {- empty -} { [] }

| Stm ListStm { (:) $1 $3 }

but under a left-recursive transformation:

ListStm : {- empty -} { [] }

| ListStm Stm { flip (:) $1 $2 }

Then the smart programmer would also be careful to reverse the list when
it is used:

Prog : Typ Ident ’(’ ’)’ ’{’ ListStm ’}’ { Fun $1 $2 (reverse $6) }

29



As reported in the Happy manual, this transformation is vital to avoid
running out of stack space with long lists. Thus we have implemented the
transformation in the BNF Converter for pairs of rules of the form

[]. [C] ::= ;

(:). [C] ::= C x [C] ;

where C is any category and x is any sequence of terminals (possibly empty).

There is another important parsing technique, recursive descent, which
cannot live with left recursion at all, but loops infinitely with left-recursive
grammars (cf. e.g. [1]). The question sometimes arises if, when designing a
grammar, one should take into account what method will be used for parsing
it. The view we are advocating is that the designer of the grammar should
in the first place think of the abstract syntax, and let the parser generator
perform automatic grammar transformations that are needed by the parsing
method.

2.5 Discussion

2.5.1 Results

LBNF and the BNF Converter[5] were introduced as a teaching tool at the
fourth-year compiler course in Spring 2003 at Chalmers. The goal was, on
the one hand, to advocate the use of declarative and portable language defi-
nitions, and on the other hand, to leave more time for back-end construction
in a compiler course. The students of the course had as a project to build
a compiler in small groups, and grading was based on how much (faultless)
functionality the compiler had, e.g. how many language features and how
many back ends. The first results were encouraging: a majority (12/20) of
the groups that finished their compiler used the BNF Converter. They all
were able to produce faultless front ends and, in average, more advanced
back ends than the participants of the previous year’s edition of the course.
In fact, the lexer+parser part of the compiler was estimated only to be 25
% of the work at the lowest grade, and 10 % at the highest grade—far from
the old times when the parser was more than 50 % of a student compiler.

One worry about using the LBNF in teaching was that students would
not really learn parsing, but just to write grammars. We found that this
concern is not relevant when comparing LBNF with a parser tool like Happy
and YACC: students writing their parsers in YACC are equally isolated from
the internals of LR parsing as those writing in LBNF. In fact, as learning
the formalism takes less time in the case of LBNF, the teacher can allocate
more time for explaining how the LR parser works. The lexer was a bigger
concern, though: since all of the token types needed for the project were
predefined types in LBNF, the students did not need to write a single regular

30



expression to finish their compiler! An obvious solution to this is to add some
more exotic token types to the project specification.

The main conclusion drawn from the teaching experiment was that the
tool should be ported to C and Java, so that the students who don’t use
Haskell would have the same facilities as those who do.

Students in a compiler class usually implement toy languages. What
about real-world languages? As an experiment, a complete LBNF definition
of ANSI C, with [9] as reference, has been written4. The length of the LBNF
source file is approximately the same as the length of the specification. Here
is a word count comparison between the source file and what is generated:

$ wc C.cf

288 1248 10203 C.cf

$ wc ?*C.* makefile

287 707 5635 AbsC.hs

518 1795 23062 DocC.tex

72 501 2600 LexC.x

477 2675 13761 ParC.y

423 3270 18114 PrintC.hs

336 1345 9178 SkelC.hs

22 103 677 TestC.hs

7 22 320 makefile

2142 10418 73347 total

Another real-world example is the object-oriented specification language
OCL [17]5. And of course, the BNF Converter has been implemented by
using modules generated from an LBNF grammar of LBNF (see the Ap-
pendix).

2.5.2 Well-behaved languages

A language that can be defined in LBNF is one whose syntax is context-free.6

Its lexical structure can be described by a regular expression. Modern lan-
guages, like Java and C, are close to this ideal; Haskell, with its layout syntax
and infix declarations, is a little farther. To rescue the maximum of existing
Haskell or some other language would be a matter of detail handwork rather
than general principles; and we have opted for keeping the LBNF formalism
simple, sacrificing completeness.

We do not need to sacrifice semantic completeness, however: languages
usually have a well-behaved subset that is enough for expressing everything

4Work by Ulf Persson at Chalmers
5Work by Kristofer Johannisson at Chalmers
6Due to the parser tool used by the BNF converter, it moreover has to be LALR(1)-

parsable; but this is a limitation not concerning LBNF as such.

31



that is expressible in the language. When designing new languages—and
even when using old ones—we find it a virtue to avoid exotic features. Such
features are often included in the name of user-friendliness, but for new
users, they are more often an obstacle than a help, since they violate the
users’ expectations gained from other languages.

2.5.3 Related work

The BNF Converter belongs largely to the YACC [8] tradition of compiler
compilers, since it compiles a higher-level notation into the YACC-like nota-
tion of Happy, and since the parser is the most demanding part of a language
front-end implementation. Another system on this level up from YACC is
Cactus [12], which uses an EBNF-like notation to generate a Happy parser,
an Alex lexer, and a datatype definition for abstract syntax. Cactus, unlike
the BNF Converter, aims for completeness, and it is indeed possible to de-
fine Haskell 98 (without layout rules) in it [6]. The price to pay is that the
notation is less simple than LBNF. Moreover, because of Cactus’s higher
level of generality, it is no longer possible to extract a pretty-printer from a
grammar. Nor does Cactus generate documentation.

For abstract syntax alone, the Zephyr definition language [2] defines a
portable format and translations into program code in SML, Haskell, C,
C++, Java, and SGML. Zephyr also generates functions for displaying syn-
tax trees in these languages. But it does not support the definition of con-
crete syntax.

A survey of compiler tools on the web and in the literature tells that their
authors almost invariably opt for expressivity rather than declarativity. The
situation is different with grammar tools used in linguistic: there the declar-
ativity and reversibility (i.e. usability for both parsing and generation) of
grammar formalisms is highly valued. A major example of this philosophy
are Definite Clause Grammars (DCG) [14]. In practice, DCGs are imple-
mented as an embedded language in Prolog, and thereby some features of
full Prolog are sometimes smuggled into grammars to improve expressivity;
but this is usually considered harmful since it destroys declarativity and
reversibility.

2.5.4 Future work

In addition to the obvious task of writing LBNF back ends to other languages
than Haskell, there are many imaginable ways to extend the formalism itself.
One direction is to connect LBNF with the Grammatical Framework GF
[16]. GF is a rich grammar formalism originally designed to describe natural
languages. LBNF was originally a spin-off of GF, customizing a subset of GF
to combine with standard compiler tools. The connection between LBNF
and and GF is close, with the difference that GF makes an explicit distinction

32



between abstract and concrete syntax. Consider an LBNF rule describing
multiplication:

Mult. Exp2 ::= Exp2 "*" Exp3 ;

This rule is in GF divided into two judgements: an abstract syntax function
definition, and a concrete syntax linearization rule,

fun Mult : Exp -> Exp -> Exp ;

lin Mult e1 e2 =

{s = parIf P2 e1 ++ "*" ++ parIf P3 e2 ; p = P2} ;

Precedence is treated as a parameter that regulates the uses of parentheses.
In GF, the user can define new parameter types, and thus the precedences
P2 and P3, as well as the function parIf, are defined in the source code
instead of being built in into the system, as in LBNF. GF moreover includes
higher-order abstract syntax and dependent types, and a GF grammar can
therefore define the type system of a language.

2.6 Conclusion

We see Labelled BNF as a natural step to a yet higher level in the de-
velopment that led machine programmers to create assemblers, assembler
programmers to create Fortran and C, and C programmers to create YACC
and Lex. A high-level notation always hides details that can be considered
well-understood and therefore uninteresting; this lets the users of the new
notation to concentrate on new things. At the same time, it creates qual-
ity by eliminating certain errors. Inevitably, it also precludes some smart
decisions that a human would make if hand-writing the generated code.

It would be too big a claim to say that LBNF can replace tools like
YACC and Happy. It can only replace them if the language to be imple-
mented is simple enough. Even though this is not always the case with
legacy programming languages, there is a visible trend towards simple and
standardized, “well-behaved” languages, and LBNF has proved useful in
reducing the effort in implementing such languages.

2.7 Appendix: LBNF Specification

This document was automatically generated by the BNF-Converter. It was gen-
erated together with the lexer, the parser, and the abstract syntax module, which
guarantees that the document matches with the implementation of the language
(provided no hand-hacking has taken place).

33



The lexical structure of LBNF

Identifiers

Identifiers 〈Ident 〉 are unquoted strings beginning with a letter, followed by any
combination of letters, digits, and the characters ’, reserved words excluded.

Literals

String literals 〈String 〉 have the form ”x”, where x is any sequence of characters.
Character literals 〈Char 〉 have the form ’c’, where c is any single character.

Reserved words and symbols

The set of reserved words is the set of terminals appearing in the grammar. Those
reserved words that consist of non-letter characters are called symbols, and they
are treated in a different way from those that are similar to identifiers. The lexer
follows rules familiar from languages like Haskell, C, and Java, including longest
match and spacing conventions.

The reserved words used in LBNF are the following:

char comment digit
entrypoints eps internal
letter lower token
upper

The symbols used in LBNF are the following:

; . ::=
[ ]
( : )
| − *
+ ? {
} ,

Comments

Single-line comments begin with −−.
Multiple-line comments are enclosed with { − and − } .

The syntactic structure of LBNF

Non-terminals are enclosed between 〈 and 〉. The symbols ::= (production), |
(union) and ε (empty rule) belong to the BNF notation. All other symbols are
terminals.

〈Grammar 〉 ::= 〈ListDef 〉

〈ListDef 〉 ::= ε

| 〈Def 〉 ; 〈ListDef 〉

34



〈ListItem 〉 ::= ε

| 〈Item 〉 〈ListItem 〉

〈Def 〉 ::= 〈Label 〉 . 〈Cat 〉 ::= 〈ListItem 〉
| comment 〈String 〉
| comment 〈String 〉 〈String 〉
| internal 〈Label 〉 . 〈Cat 〉 ::= 〈ListItem 〉
| token 〈Ident 〉 〈Reg 〉
| entrypoints 〈ListIdent 〉

〈Item 〉 ::= 〈String 〉
| 〈Cat 〉

〈Cat 〉 ::= [ 〈Cat 〉 ]
| 〈Ident 〉

〈Label 〉 ::= 〈Ident 〉
|
| [ ]
| ( : )
| ( : [ ] )

〈Reg2 〉 ::= 〈Reg2 〉 〈Reg3 〉
| 〈Reg3 〉

〈Reg1 〉 ::= 〈Reg1 〉 | 〈Reg2 〉
| 〈Reg2 〉 − 〈Reg2 〉
| 〈Reg2 〉

〈Reg3 〉 ::= 〈Reg3 〉 *
| 〈Reg3 〉 +
| 〈Reg3 〉 ?
| eps
| 〈Char 〉
| [ 〈String 〉 ]
| { 〈String 〉 }
| digit
| letter
| upper
| lower
| char
| ( 〈Reg 〉 )

〈Reg 〉 ::= 〈Reg1 〉

〈ListIdent 〉 ::= 〈Ident 〉
| 〈Ident 〉 , 〈ListIdent 〉

35



Bibliography

[1] A. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

[2] A. W. A. J. L. K. Daniel C. Wang and C. S. Serra. The zephyr abstract
syntax description language. Proceedings of the Conference on Domain-Specific
Languages, 1997.

[3] C. Dornan. Alex: a Lex for Haskell Programmers, 1997.
http://www.cs.ucc.ie/dornan/alex.html.

[4] C. Dornan. JLex: A Lexical Analyzer Generator for Java, 2000.
http://www.cs.princeton.edu/ appel/modern/java/JLex/.

[5] M. Forsberg and A. Ranta. Labelled BNF: a highlevel formalism for defining
well-behaved programming languages. Proceedings of the Estonian Academy
of Sciences: Physics and Mathematics, 52:356–377, 2003. Special issue on
programming theory edited by J. Vain and T. Uustalu.

[6] T. Hallgren. The Haskell 98 grammar in Cactus, 2001.
http://www.cs.chalmers.se/~hallgren/CactusExample/.

[7] S. E. Hudson. CUP Parser Generator for Java, 1999.
http://www.cs.princeton.edu/ appel/modern/java/CUP/.

[8] S. C. Johnson. Yacc — yet another compiler compiler. Technical Report
CSTR-32, AT & T Bell Laboratories, Murray Hill, NJ, 1975.

[9] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-Hall,
Englewood Cliffs, New Jersey, USA, 1988. 2nd edition.

[10] M. E. Lesk. Lex — a lexical analyzer generator. Technical Report 39, Bell
Laboratories, Murray Hill, N.J., 1975.

[11] S. Marlow. Happy, The Parser Generator for Haskell, 2001.
http://www.haskell.org/happy/.

[12] N. Martinsson. Cactus (Concrete- to Abstract-syntax Conversion Tool
with Userfriendly Syntax) . Master’s Thesis in Computer Science, 2001.
http://www.mdstud.chalmers.se/~mdnm/cactus/6.

[13] P. Naur. Revised Report of the Algorithmic Language Algol 60. Comm. ACM,
6:1–17, 1963.

[14] F. Pereira and D. Warren. Definite clause grammars for language analysis—a
survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence, 13:231–278, 1980.

36



[15] S. Peyton Jones and J. Hughes. Report on the Programming Language
Haskell 98, a Non-strict, Purely Functional Language. Available from
http://www.haskell.org, February 1999.

[16] A. Ranta. Grammatical Framework: A Type-Theoretical Grammar Formal-
ism. Journal of Functional Programming, 2004.

[17] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling
with UML. Addison-Wesley, 1999.

37



Chapter 3

Paper II: BNF Converter

Multilingual Front-End Generation
from Labelled BNF Grammars

Michael Pellauer, Markus Forsberg, and Aarne Ranta
Chalmers University of Technology
Department of Computing Science
SE-412 96 Gothenburg, Sweden

pellauer, markus, aarne@cs.chalmers.se

Abstract

The BNF Converter is a compiler-construction tool that uses a Labelled BNF gram-
mar as the single source of definition to extract the abstract syntax, lexer, parser
and pretty printer of a language. The added layer of abstraction allows it to per-
form multilingual code generation. As of version 2.0 it is able to output front ends
in Haskell, Java, C or C++.

3.1 Introduction

Language implementors have long used generative techniques to implement parsers.
However, with advances in language design the focus of the compiler front end has
shifted from the parsing of difficult languages to the definition of a complex abstract-
syntax-tree data structure. It is the common practise for modern implementors to
use one tool to generate an abstract syntax tree, another to generate a lexer, and
a third to generate a parser.

Yet this requires that the implementor learn three separate configuration syn-
taxes, and maintain disparate source files across changes to the language definition.
The BNF Converter1 is a compiler-construction tool based on the idea that from
a single source grammar it is possible to generate both an abstract syntax tree
definition, including a traversal function, and a concrete syntax, including lexer,
parser and pretty printer.

1Available from the BNF Converter website [8]

38



The decoupling of the grammar description from the implementation language
allows our tool to perform multilingual code generation. As of version 2.0 the
BNF Converter is able to generate a front end in Haskell, Java, C, or C++. This
continues the tradition of Andrew Appel [1, 2, 3], whose textbooks apply the same
compiler methodology across three widely different target languages.

The BNF Converter Approach.

With the BNF Converter the user specifies a grammar using an enhanced version
of Backus Naur Form called Labelled BNF (LBNF), described in Section 3.2. This
grammar is language independent and serves as a single source for all language def-
inition changes, increasing maintainability. After the user selects a target language
it is used generate the following:

• Abstract syntax tree data structure

• Lexer and parser specification

• Pretty printer and traversal skeleton

• Test bench and Makefile

• Language documentation

This unified approach to generation offers many advantages. First of all, the
increased level of abstraction allows our tool to check the grammar for problems,
rather than attempting to check code written directly in an implementation lan-
guage like C. Secondly, the components are generated to interoperate correctly
together with no additional work from the user. Packages such as the abstract
syntax and pretty printer can be supplied as development frameworks to encourage
applications to make use of the new language.

Combined with BNF Converter 2.0’s multiingual generation this facilitates in-
teresting possibilities, such as using a server application written in C++ to pretty-
print output that will be parsed by a Java application running on a PDA. The lan-
guage maintainers themselves can experiment with implementing the same method-
ology over multiple languages, even creating a prototype language implementation
in Haskell, then switching to C for development once the language definition has
been finalized.

This paper gives an overview of the LBNF grammar formalism. We then com-
pare the methodology the BNF Converter uses to produce code in Haskell, Java,
C++, and C, highlighting some of the differences of generating a compiler in these
languages. Finally, we conclude with a discussion of our practical experiences using
the tool in education and language prototyping.

Language Describability.

The requirements that the BNF Converter puts on a language in order to describe
it are simple and widely accepted: the syntax must be definable by a context-free
grammar and the lexical structure by a regular expression. The parser’s semantic
actions are only used for constructing abstract syntax trees and can therefore not
contribute to the definition of the language. Toy languages in compiler text books
are usually designed to meet these criteria, and the trend in real languages is to
become closer to this ideal.

39



Often it is possible to use preprocessing to turn a language that almost meets
the criteria into one that meets them completely. Features such as layout syntax,
for example, can be handled by adding a processing level between the lexer and the
parser. Our experiences with real-world languages are discussed in Section 3.8.

3.2 The LBNF Grammar Formalism

The input to the BNF Converter is a specification file written in the LBNF gram-
mar formalism. LBNF is an entirely declarative language designed to combine the
simplicity and readability of Backus Naur Form with a handful of features to hasten
the development of a compiler front-end.

Besides declarativity, we find it important that LBNF has its own semantics,
instead of only getting its meaning through translations to Haskell, Java, C, etc.
This means, among other things, that LBNF grammars are type checked on the
source, so that semantic errors do not appear unexpectedly in the generated code.
Full details on LBNF syntax and semantics are given in [9], as well as on the BNF
Converter homepage [8].

3.2.1 Rules and Labels

At the most basic level, an LBNF grammar is a BNF grammar where every rule
is given a label. The label is an identifier used as the constructor of syntax trees
whose subtrees are given by the non-terminals of the rule; the terminals are just
ignored. As a first example, consider a rule defining assignment statements in C-like
languages:

SAssign. STM ::= Ident "=" EXP ;

Apart from the label SAssign, the rule is an ordinary BNF rule, with terminal
symbols enclosed in double quotes and non-terminals written without quotes. A
small, though complete example of a grammar is given in Section 3.2.4.

Some aspects of the language belong to its lexical structure rather than its
grammar, and are described by regular expressions rather than by BNF rules. We
have therefore added to LBNF two rule formats to define the lexical structure:
tokens and comments (Section 3.2.2).

Creating an abstract syntax by adding a node type for every BNF rule may
sometimes become too detailed, or cluttered with extra structures. To remedy this,
we have identified the most common problem cases, and added to LBNF some extra
conventions to handle them (Section 3.2.3).

Finally, we have added some macros, which are syntactic sugar for potentially
large groups of rules and help to write grammars concisely, and some pragmas, such
as the possibility to limit the entrypoints of the parser to a subset of nonterminals.

3.2.2 Lexer Definitions

The token definition format.

The token definition form enables the LBNF programmer to define new lexical
types using a simple regular expression notation. For instance, the following defines
the type of identifiers beginning with upper-case letters.

40



token UIdent (upper (letter | digit | ’\_’)*) ;

The type UIdent becomes usable as an LBNF nonterminal and as a type in the
abstract syntax. Each token type is implemented by a newtype in Haskell, as a
String in Java, and as a typedef to char* in C/C++.

Predefined token types.

To cover the most common cases, LBNF provides five predefined token types:

Integer, Double, Char, String, Ident

These types have predefined lexer rules, but could also be defined using the regular
expressions of LBNF (see [9]). In the abstract syntax, the types are represented
as corresponding types in the implementation language; Ident is treated like user-
defined token types. Only those predefined types that are actually used in the
grammar are included in the lexer and the abstract syntax.

The comment definition format.

Comments are segments of source code that include free text and are not passed
to the parser. The natural place to deal with them is in the lexer. A comment

definition instructs the lexer generator to treat certain pieces of text as comments.

The comment definition takes one or two string arguments. The first string
defines how a comment begins. The second, optional string marks the end of a
comment; if it is not given then the comment is ended by a newline. For instance,
the Java comment convention is defined as follows:

comment "//" ;

comment "/*" "*/" ;

3.2.3 Abstract Syntax Conventions

Semantic dummies.

Sometimes the concrete syntax of a language includes rules that make no semantic
difference. For instance, the C language accepts extra semicolons after statements.
We do not want to represent these extra semicolons in the abstract syntax. Instead,
we use the following convention:

If a rule has only one non-terminal on the right-hand-side, and this
non-terminal is the same as the value type, then it can have as its
label an underscore ( ), which does not add anything to the syntax
tree.

Thus, we can write the following rule in LBNF:

_ . STM ::= STM ";" ;

41



Precedence levels.

A common idiom in (ordinary) BNF is to use indexed variants of categories to
express precedence levels, e.g. EXP, EXP2, EXP3. The precedence level regulates
the order of parsing, including associativity. An expression belonging to a level n

can be used on any level < n as well. Parentheses lift an expression of any level to
the highest level.

Distinctions between precedence levels and moving expressions between them
can be defined by BNF rules, but we do not want these rules to clutter the abstract
syntax. Therefore, we can use semantic dummies (_) for the transitions, together
with the following convention:

A category symbol indexed with a sequence of digits is treated as a
type synonym of the corresponding non-indexed symbol.

A non-indexed symbol is treated as having the level 0. The following grammar
shows how the convention works in a familiar example with arithmetic sums and
products:

EPlus. EXP ::= EXP "+" EXP2 ;

ETimes. EXP2 ::= EXP2 "*" EXP3 ;

EInt. EXP3 ::= Integer ;

_. EXP ::= EXP2 ;

_. EXP2 ::= EXP3 ;

_. EXP3 ::= "(" EXP ")" ;

The indices also guide the pretty-printer to generate a correct, minimal number of
parentheses.

The coercions macro provides a shorthand for generating the dummy tran-
sition rules concisely. It takes as its arguments the unindexed category and the
highest precedence level. So the final three rules in the above example could be
replaced with:

coercions EXP 3 ;

Polymorphic lists.

It is easy to define monomorphic list types in LBNF:

NilDEF. ListDEF ::= ;

ConsDEF. ListDEF ::= DEF ";" ListDEF ;

But LBNF also has a polymorphic list notation. It follows the Haskell syntax but
is automatically translated to native representations in Java, C++, and C.

[]. [DEF] ::= ;

(:). [DEF] ::= DEF ";" [DEF] ;

The basic ingredients of this notation are

[C], the category of lists of type C,

[] and (:), the Nil and Cons rule labels,

(:[]), the rule label for one-element lists.

42



The list notation can also be seen as a variant of the Kleene star and plus, and
hence as an ingredient from Extended BNF in LBNF.

Using the polymorphic list type makes BNF Converter perform an automatic
optimization: left-recursive lists. Standard lists in languages like Haskell are right-
recursive, but LR parsers favor left-recursive lists because they save stack space.
BNF Converter allows programmers to define familiar right-recursive lists, but
translates them into left-recursive variants in parser generation. When used in
another construction, the list is automatically reversed. The code examples below,
generated from the grammar in Section 3.2.4, show how this works in the different
parser tools.

The terminator and separator macros.

The terminator macro defines a pair of list rules by what token terminates each
element in the list. For instance,

terminator STM ";" ;

is shorthand for the pair of rules

[]. [STM] ::= ;

(:). [STM] ::= STM ";" [STM] ;

The separator macro is similar, except that the separating token is not expected
after the last element of the list. The qualifier nonempty can be used in both macros
to make the one-element list the base case.

3.2.4 Example Grammar

A small example LBNF grammar is given in Figure 3.1. It describes a language
of boolean expressions, perhaps written as part of a larger grammar. In this small
language a PROGRAM is simply a list of expressions terminated by semicolons.
The expressions themselves are just logical AND and OR of true, false, or variable
names represented by the LBNF built-in type Ident.

This example, though small, is representative because it uses both polymor-
phic lists and precedence levels (the AND operator having higher precedence than
OR). We will use this single source example to explore BNF Converter’s generation
methodology across multiple implementation languages.

3.3 Haskell Code Generation

The process the BNF Converter uses to generate Haskell code is quite straightfor-
ward. Here we will only present an overview of this process, for comparison with
the methods used for Java and C. For a more complete look at this process see the
documentation on the BNF Converter Homepage [8].

The Abstract Syntax.

Consider the example grammar given in Section 3.2.4.
The Haskell abstract syntax generated by the BNF Converter, shown in Figure

3.2A, is essentially what a Haskell programmer would write by hand, given the close
relationship between a declarative grammar and Haskell’s algebraic data types.

43



PROGRAM. PROGRAM ::= [EXP] ;

EOr. EXP ::=

EXP "||" EXP1 ;

EAnd. EXP1 ::=

EXP1 "&&" EXP2 ;

ETrue. EXP2 ::= "true" ;

EFalse. EXP2 ::= "false" ;

EVar. EXP2 ::= Ident ;

terminator EXP ";" ;

coercions EXP 2 ;

Figure 3.1: LBNF Source code for all examples

The Lexer and Parser.

The BNF Converter generates lexer and parser specifications for the Alex [6] and
Happy [16] tools. The lexer file (omitted for space considerations) consists mostly
of standard rules for literals and identifiers, but has rules added for reserved words
and symbols (i.e. terminals occurring in the grammar), regular expressions defined
in token definitions, and comments.

The Happy specification (Figure 3.2B) has a large number of token definitions,
followed by parsing rules corresponding closely to the source BNF rules. Note the
left-recursive list transformation, as defined in Section 3.2.3.

The Pretty Printer and Case Skeleton.

The pretty printer consists of a Haskell class Print with instances for all generated
data types, taking precedence into account. The class method prt generates a list
of strings for a syntax tree of any type (Figure 3.2C).

The list of strings is then put in layout (indentation, newlines) by a rendering
heuristic, which is generated independently of the grammar. This function is de-
signed to make C-like languages look good by default, but it is written with easy
modification in mind.

The case skeleton (Figure 3.2D) is a simple traversal of the abstract syntax
tree representation that can be used as a template when defining the compiler back
end, e.g. type checker and code generator. The same methodology is also used to
generate the pretty printer. The case branches in the skeleton are initialized to fail,
and the user can simply replace them with something more interesting.

The Makefile and Test Bench.

The generated test bench file can be loaded in the Haskell interpreter hugs to run
the parser and the pretty printer on terminal or file input. If parsing succeeds the
test functions display a syntax tree, and the pretty printer linearization. Otherwise
an error message is displayed.

44



A simple makefile is created to run Alex on the lexer, Happy on the parser,
and LaTeX on the document, by simply typing make. The make clean command
removes the generated files.

Translation Summary.

Overall, it is easy to represent an LBNF grammar as a Haskell data type—a
straightforward translation between source productions and algebraic data types.
Language implementors have long known that the similarities between algebraic
data types and grammar specifications make functional programming a good choice
for compilers.

3.4 Java Code Generation

Translating an LBNF grammar into an object-oriented language is less straightfor-
ward. Appel outlines two possible approaches to abstract syntax representation in
Modern Compiler Implementation in Java [2].

In the first method, which Appel refers to as the “Object-Oriented method,”
there is one Java class for each rule in the language grammar. Each class inherits
from a single superclass, and each class defines operations on itself. For instance,
if our compiler were to translate to SPARC and Intel assembly code each class
would have a method toSPARC() and toIntel() that would translate itself to the
appropriate representation. The advantage of this method is that it is easy to add
new language categories. The user may add new classes containing the appropriate
methods without altering existing definitions. The disadvantage is that it can be
hard to add new syntax tree traversals. Adding a function toAlpha() for instance,
could result in editing hundreds of classes.

In the second “syntax separate from interpretations” method, there is still one
Java class for each grammar rule, but now classes are simply empty data structures
with no methods aside from a constructor. Translation functions are removed from
the data structure, and traverse the tree by straightforward manner. With this
method it is easy to add new traversals, and these functions can make better use of
context information than single objects’ methods. The disadvantage is that adding
new language constructs requires editing all existing traversal functions to handle
the new cases.

However, the BNF Converter, which makes the grammar the central point
of all language changes, lessens this disadvantage. Additionally, since translation
functions are now traversals, it is easy for our tool to generate skeleton functions
as we do in Haskell and for the user to reuse the template in all transformations.2

Therefore the BNF Converter uses this method in generating Java (and C++)
abstract syntax.

Java Abstract Syntax Generation.

Let us return to our example of Boolean Expressions from earlier (Section 3.2.4).
Given this grammar, the BNF Converter will generate the abstract syntax found

2Of course, if the user implements a translation and then modifies the language defini-
tion they must still change the implemented code to reflect the modifications. However,
they can refer to the template function in order to locate the differences.

45



A. Abstract Syntax

data PROGRAM = PROGRAM [EXP]

deriving (Eq, Show)

data EXP =

EOr EXP EXP

| EAnd EXP EXP

| ETrue

| EFalse

| EVar

deriving (Eq, Show)

B. Happy Parser

PROGRAM :: { PROGRAM }

PROGRAM : ListEXP { PROGRAM (reverse $1) }

EXP :: { EXP }

EXP : EXP ’||’ EXP1 { EOr $1 $3 }

| EXP1 { $1 }

EXP1 :: { EXP }

EXP1 : EXP1 ’&&’ EXP2 { EAnd $1 $3 }

| EXP2 { $1 }

EXP2 :: { EXP }

EXP2 : ’true’ { ETrue }

| ’false’ { EFalse }

| Ident { EVar $1 }

| ’(’ EXP ’)’ { $2 }

ListEXP :: { [EXP] }

ListEXP : {- empty -} { [] }

| ListEXP EXP ’;’ { flip (:) $1 $2 }

C. Pretty Printer

instance Print PROGRAM where

prt i e = case e of

PROGRAM exp -> prPrec i 0

(concat [prt 0 exp])

instance Print EXP where

prt i e = case e of

EOr exp0 exp -> prPrec i 0

(concat

[prt 0 exp0 , ["||"] , prt 1 exp])

EAnd exp0 exp -> prPrec i 1

(concat

[prt 1 exp0 , ["&&"] , prt 2 exp])

ETrue -> prPrec i 2

(concat [["true"]])

EFalse -> prPrec i 2

(concat [["false"]])

EVar id -> prPrec i 2

(concat [prt 0 id])

prtList es = case es of

[] -> (concat [])

x:xs ->

(concat

[prt 0 x , [";"] ,

prt 0 xs])

D. Case Skeleton

transPROGRAM :: PROGRAM -> Result

transPROGRAM x = case x of

PROGRAM exp -> failure x

transEXP :: EXP -> Result

transEXP x = case x of

EOr exp0 exp -> failure x

EAnd exp0 exp -> failure x

ETrue -> failure x

EFalse -> failure x

EVar id -> failure x

Figure 3.2: Haskell source code fragments generated from Figure 3.1

46



in Figure 3.3A, following Appel’s method.
There are several differences between this transformation and the Haskell ver-

sion that should be highlighted. First, experienced Java programmers will quickly
notice that all the generated classes are public, and in Java public classes must
go into their own .java file, with class name matching the file name. Since it
common to have hundreds of productions in an LBNF grammar, the user’s source
directory can quickly become cluttered, so Abstract Syntax classes are placed into
a sub-package called Absyn, and thus must be kept in a file-system subdirectory of
the same name, which the tool creates.

There is a second difference in the code in Figure 3.3A: names. Classes in
Java have instance variables and parameters, and all of these require unique names
(whereas in Haskell data structures the names are only optional). First, we realize
that parameter names generally are not important—we can simply give them the
name “p” plus a unique number. The names of instance variables, on the other
hand, do matter. The BNF Converter converts the type name to lowercase and
adds an underscore to prevent conflicts with reserved words. If there is more than
one variable of a type then they are numbered. Thus, the classes EPlus and ETimes

have members exp 1 and exp 2.
Notice that Appel’s method uses public instance variables, which may be re-

garded as bad style by object-oriented programmers today. We have chosen to
remain with the original method, both to keep a higher correspondence to the
textbook, and to ease the generation of the pretty printer and other traversals.

Finally recall that Java 1.4 does not support polymorphic lists. Generic types
is supported in the Java 2 Platform, Standard Edition 1.5 release, also implemented
in BNF Converter (see section 3.5). The BNF Converter Java 1.4 backend generates
simple null-terminated linked lists for each list that the grammar uses. These special
classes are prefixed with “List,” such as the class ListEXP above, which takes the
place of Haskell’s [EXP].

The Lexer and Parser.

The BNF Converter generates specification files for the JLex [7] and CUP [13]
tools which create a lexer and parser in a manner similar to the Haskell version.
The difference between the tools is mainly a matter of syntax. For example, CUP
cannot work with strings directly but requires terminal symbols be defined for each
language symbol or reserved word. Also, CUP does not refer to variables with
$ variables like Bison, but rather by assigning names to all possibly-used values.
Specifications equivalent to the Happy code in Figure 3.2B is shown in Figures
3.3B.

The Java Pretty Printer and Skeleton Function.

Similar to the Haskell version, the Java pretty printer linearizes the abstract syntax
tree using some easily-modifiable heuristics. It follows the method Appel outlines,
using Java’s instanceof operator to determine which subclass it is dealing with,
then down-casting and working with the public variables. For example, the code
to pretty-print an EXP is found in Figure 3.3D.

However, the pretty printer alone is not enough to test the correctness of a
parse. In the Haskell version the built-in show function is used to print out the
abstract syntax tree so that the programmer can confirm its correctness. We could

47



use Java’s toString() method in a similar role, but this is not satisfying, as it is
generally used for debugging purposes. Instead, the BNF Converter adds a second
method to the pretty printer, similar to Haskell’s show function, shown in Figure
3.3E.

Throughout both methods the generated code makes use of Java’s
StringBuffer class to efficiently build the result of the linearization.

This instanceof method is also used to generate a code skeleton. However,
this method may seem awkward to many object-oriented programmers, who are
often taught to avoid instanceof wherever possible.

Much more familiar is the Visitor Design Pattern [12]. In it each member
of the abstract syntax tree implements an accept method, which then calls the
appropriate method in the visiting class (double-dispatch).

There is no reason that these two methods cannot live side by side. Therefore
the BNF Converter generates code skeletons using both Appel’s method and a
Visitor interface and skeleton (Figure 3.3F).

Most familiar Visitor Design Patterns use a Visitee-traversal algorithm. That
is to say, visiting the top member of a list will automatically visit all the members
of the list. However, the BNF Converter-generated pattern uses Visitor-traversal.
This means that it is the Visitor’s responsibility, when visiting a list, to visit all the
members in turn. This is because certain algorithms that compilers want to im-
plement are not compositional, so performing a transformation on a single member
may be quite different than performing that transformation on a certain pattern
of nodes. For example, during peephole analysis a compiler may wish to merge to
subsequent additions into a single operation, but may want to leave single additions
unchanged. In our experience, these types of algorithms are easier to implement if
the Visitor itself is in control of the traversal.

The Test Bench and Makefile.

With the pretty printer defined it is trivial to define a test bench and makefile to
compile the code. However, the lack of an interactive environment such as Haskell’s
hugs means that the user is not able to specify which parser is used. Instead the
first-defined entry-point of the grammar is used by default. However it is easy for
the user to specify another entry point directly in the test bench source code.

Translation Summary.

Overall, translating from a declarative grammar to an object-oriented abstract syn-
tax definition is possible, however the translation introduces a number of new com-
plications such as the names of instance variables. A comparison of Figure 3.2A
and Figure 3.3A emphasizes the challenges of implementing a compiler in Java.

The BNF Converter tries to deal with these complications in a consistent way
to ease the implementation of the rest of the compiler. Appel’s syntax-separate-
from-interpretations method introduces several conventions that object-oriented
programmers may find confusing at first. However, in practice the ease of using the
generated transformation templates should help users to quickly overcome these
difficulties.

48



A. Abstract Syntax

public class PROGRAM {

public ListEXP listexp_;

public PROGRAM(ListEXP p1)

{ listexp_ = p1; }

}

public abstract class EXP {}

public class EAnd extends EXP {

public EXP exp_1, exp_2;

public EAnd(EXP p1, EXP p2)

{ exp_1 = p1; exp_2 = p2; }

}

public class EOr extends EXP {

public EXP exp_1, exp_2;

public EOr(EXP p1, EXP p2)

{ exp_1 = p1; exp_2 = p2; }

}

public class ETrue extends EXP {

public ETrue() { }

}

public class EFalse extends EXP {

public EFalse() { }

}

public class EVar extends EXP {

public String ident_;

public EVar(String p1)

{ ident_ = p1; }

}

public class ListEXP {

public EXP exp_;

public ListEXP listexp_;

public ListEXP(EXP p1, ListEXP p2)

{ exp_ = p1; listexp_ = p2; }

}

B. CUP Parser

terminal _SYMB_0; // ||

terminal _SYMB_1; // &&

terminal _SYMB_2; // ;

terminal _SYMB_3; // (

terminal _SYMB_4; // )

terminal _SYMB_5; // false

terminal _SYMB_6; // true

terminal String _IDENT_;

PROGRAM ::= ListEXP:p_1 {:

if (p_1 != null) p_1 = p_1.reverse();

RESULT = new Absyn.PROGRAM(p_1); :}

;

EXP ::= EXP:p_1 _SYMB_0 EXP1:p_3 {:

RESULT = new Absyn.EOr(p_1, p_3); :}

| EXP1:p_1 {: RESULT = (p_1); :}

;

EXP1 ::= EXP1:p_1 _SYMB_1 EXP2:p_3 {:

RESULT = new Absyn.EAnd(p_1, p_3); :}

| EXP2:p_1 {: RESULT = (p_1); :}

;

EXP2 ::= _SYMB_6 {:

RESULT = new Absyn.ETrue(); :}

| _SYMB_5 {:

RESULT = new Absyn.EFalse(); :}

| _IDENT_:p_1 {:

RESULT = new Absyn.EVar(p_1); :}

CUP Parser (continued)

| _SYMB_3 EXP:p_2 _SYMB_4 {:

RESULT = (p_2); :}

;

ListEXP ::= /*empty*/{: RESULT = null; :}

| ListEXP:p_1 EXP:p_2 _SYMB_2 {:

RESULT = new Absyn.ListEXP(p_2, p_1); :}

;

C. Pretty Printer

private static void

pp(Absyn.EXP exp, int _i_) {

if (exp instanceof Absyn.EOr) {

Absyn.EOr eor = (Absyn.EOr) exp;

if (_i_ > 0) render(_L_PAREN);

pp(eor.exp_1, 0);

render("||");

pp(eor.exp_2, 1);

if (_i_ > 0) render(_R_PAREN);

}

if (exp instanceof Absyn.EAnd) {

Absyn.EAnd eand = (Absyn.EAnd) exp;

if (_i_ > 1) render(_L_PAREN);

pp(eand.exp_1, 1);

render("&&");

...

D. Abstract Syntax Viewer

private static void sh(Absyn.EXP exp)

{

if (exp instanceof Absyn.EOr) {

Absyn.EOr eor = (Absyn.EOr) exp;

render("(");

render("EOr");

sh(eor.exp_1);

sh(eor.exp_2);

render(")");

}

if (exp instanceof Absyn.EAnd) {

Absyn.EAnd eand = (Absyn.EAnd) exp;

render("(");

render("EAnd");

...

E. Visitor Design Pattern

public void visitEOr(Absyn.EOr eor) {

/* Code For EOr Goes Here */

eor.exp_1.accept(this);

eor.exp_2.accept(this);

}

public void visitEAnd(Absyn.EAnd eand) {

/* Code For EAnd Goes Here */

...

public void

visitListEXP(Absyn.ListEXP listexp) {

while(listexp!= null) {

/* Code For ListEXP Goes Here */

listexp.listexp_.accept(this);

listexp = listexp.listexp_;

...

Figure 3.3: Java source code fragments generated from Figure 3.1

49



3.5 Java 1.5 Generation

The Java backend has been adapted to Java 1.5 by Björn Bringert at Computing
Science, Chalmers. The main difference is generic types. Generic types ensure type
safety without having to resort to monomorphic types. For example, the container
types in Java 1.5 are parameterized by a type T. Compare this with Java 1.4 where
all objects in a container are of type Object. Furthermore, some adaptions were
needed to reflect these changes, in particular in the syntax tree traversal.

3.6 C++ Code Generation

With the Java version implemented it was straightforward to add support for C++
generation, using Flex [11] and Bison [10]. This translation is similar to the Java
version—the main difference being the additional complications of destructors and
the separation of interface (.H) and implementation (.cpp) files. The details of this
translation have been omitted for space considerations but may be found on the
BNF Converter homepage [8].

3.7 C Code Generation

The Abstract Syntax.

The translation to C code is quite different than the other languages. It follows the
methodology used by Appel in the C Version of his textbook [1].

In this methodology, each grammar category is represented by a C struct.
Each struct has an enumerated type indicating which LBNF label it represents,
and a union of pointers to all corresponding non-terminal categories. Our boolean-
expressions example generates the structs shown in Figure 3.4A. Structs are orig-
inally named with an underscore, and typdef declarations clean up the code by
making the original grammar name refer to a pointer to that struct.

Data structure instances are created by using constructor functions, which are
generated for each struct (Figure 3.4B). These functions are straightforward to
generate and take the place of the new operator and constructors in an object-
oriented language.

The Lexer and Parser.

The BNF Converter also generates a lexer specification file for Flex and a parser
specification file for Bison. Figure 3.4C shows specification code equivalent to the
examples in Figures 3.2B and 3.3B.

One complication is that there is no way to access the result of the parse
without storing a global pointer to it. This means that every potential entry point
production must store a pointer to the parse (the YY RESULT variables in Figure
3.4C), in case they are the final successful category. Users can limit the performance
impact of this by using the entrypoints pragma.

50



A. Abstract Syntax

struct PROG_ {

enum {is_PROG} kind;

union {

struct { ListEXP listexp_; } prog_;

} u;

};

typedef struct PROG_ *PROG;

struct EXP_ {

enum { is_EOr, is_EAnd, is_ETrue,

is_EFalse, is_EVar } kind;

union {

struct { EXP exp_1, exp_2; } eor_;

struct { EXP exp_1, exp_2; } eand_;

struct { Ident ident_; } evar_;

} u;

};

typedef struct EXP_ *EXP;

struct ListEXP_ {

EXP exp_;

ListEXP listexp_;

};

typedef struct ListEXP_ *ListEXP;

B. Constructor Functions

EXP make_EOr(EXP p1, EXP p2) {

EXP tmp = (EXP) malloc(sizeof(*tmp));

if (!tmp) {

fprintf(stderr,

"Error: out of memory!\n");

exit(1);

}

tmp->kind = is_EOr;

tmp->u.eor_.exp_1 = p1;

tmp->u.eor_.exp_2 = p2;

return tmp;

}

EXP make_EAnd(EXP p1, EXP p2)

{

...

C. Bison Parser

PROGRAM YY_RESULT_PROGRAM_ = 0;

PROGRAM pPROGRAM(FILE *inp) {

initialize_lexer(inp);

if (yyparse()) /* Failure */

return 0;

else /* Success */

return YY_RESULT_PROGRAM_;

}

...

%token _ERROR_ /* Terminal */

%token _SYMB_0 /* || */

%token _SYMB_1 /* && */

%token _SYMB_2 /* ; */

%token _SYMB_3 /* ( */

%token _SYMB_4 /* ) */

%token _SYMB_5 /* false */

%token _SYMB_6 /* true */

...

Bison Parser Continued

%%

PROGRAM : ListEXP {

$$ = make_PROGRAM(reverseListEXP($1));

YY_RESULT_PROGRAM_= $$; }

;

EXP : EXP _SYMB_0 EXP1 {

$$ = make_EOr($1, $3);

YY_RESULT_EXP_= $$; }

| EXP1 { $$ = $1; YY_RESULT_EXP_= $$; }

;

EXP1 : EXP1 _SYMB_1 EXP2 {

$$ = make_EAnd($1, $3);

YY_RESULT_EXP_= $$; }

| EXP2 { $$ = $1; YY_RESULT_EXP_= $$; }

;

EXP2 : _SYMB_6 { $$ = make_ETrue();

YY_RESULT_EXP_= $$; }

| _SYMB_5 { $$ = make_EFalse();

YY_RESULT_EXP_= $$; }

| _IDENT_ { $$ = make_EVar($1);

YY_RESULT_EXP_= $$; }

| _SYMB_3 EXP _SYMB_4 { $$ = $2;

YY_RESULT_EXP_= $$; }

;

ListEXP : /* empty */ { $$ = 0;

YY_RESULT_ListEXP_= $$; }

| ListEXP EXP _SYMB_2 {

$$ = make_ListEXP($2, $1);

YY_RESULT_ListEXP_= $$; }

;

D. Pretty Printer

...

void ppEXP(EXP _p_, int _i_) {

switch(_p_->kind) {

case is_EOr:

if (_i_ > 0) renderC(_L_PAREN);

ppEXP(_p_->u.eor_.exp_1, 0);

renderS("||");

ppEXP(_p_->u.eor_.exp_2, 1);

if (_i_ > 0) renderC(_R_PAREN);

break;

case is_EAnd:

if (_i_ > 1) renderC(_L_PAREN);

ppEXP(_p_->u.eand_.exp_1, 1);

renderS("&&");

...

void ppListEXP(ListEXP listexp, int i) {

while(listexp!= 0) {

if (listexp->listexp_ == 0) {

ppEXP(listexp->exp_, 0);

renderC(’;’);

listexp = 0;

} else {

ppEXP(listexp->exp_, 0);

renderC(’;’);

listexp = listexp->listexp_;

}

}

}

Figure 3.4: C source code fragments generated from Figure 3.1

51



The Pretty Printer and Case Skeleton.

Any algorithm that wishes to traverse the tree must switch on the kind field of each
node, then recurse to the appropriate members. For example, Figure 3.4E shows
the pretty-printer traversal. The abstract syntax tree viewer and skeleton template
are similar traversals.

Translation Summary.

While it is straightforward to generate a parser and a data structure to represent
the results of a parse in C, the combination of pointers and unions (seen in Figures
3.4B and 3.4D) results in code that can be sometimes hard for the user to work
with. We are currently looking into ways to make the generated code more friendly
through the use of macros or other methods.

3.8 Discussion

Productivity Gains.

The source code of the Boolean expression grammar in Section 3.2.4 is 8 lines. The
size of the generated code varies from 425 lines of Haskell/Happy/Alex to 1112 lines
of C++/Bison/Flex. The generated code is not superfluously verbose, but similar
to what would be written by hand by a programmer following Appel’s methodology
[1, 2, 3]. This amounts to a gain of coding effort by a factor of 50–100, which is
comparable to the effort saved by, for instance, writing an LR parser in Bison
instead of directly in C.3 In addition to decreasing the number of lines, the single-
source approach alleviates synchronization problems, both when creating and when
maintaining a language.

The BNF Converter as a Teaching Tool.

The BNF Converter has been used as a teaching tool in a fourth-year compiler
course at Chalmers University in 2003 and 2004. The goal is, on the one hand, to
advocate the use of declarative and portable language definitions, and on the other
hand, to leave more time for back-end construction. The generated code follows
the format recommended in Appel’s text books [1, 2, 3], which makes is coherent
to use the tool as a companion to those books. The results are encouraging: the
lexer/parser part of the compiler was estimated only to be 25 % of the work at the
lowest grade, and 10 % at the highest grade—at which point the student compiler
had to include several back ends. This was far from the times when the parser
was more than 50 % of a student compiler. About 50 % of the laboration groups
use Haskell as implementation language, the rest using Java, C, or C++. In 2004,
when the BNF Converter was available for all these languages, 16 groups of the 19
accepted ones used it in their assignment. The main discouraging factor were initial
problems with Bison versions: older versions than 1.875 do compile the generated
Bison file, but the parser fails with all input.

3In the present example, the Flex and Bison code generated by the BNF Converter is
172 lines, from which these tools generate 2600 line of C.

52



In Autumn 2003, the BNF Converter was also used in a second-year Chalmers
course on Programming Languages. It is replacing the previously-used parser com-
binator libraries in Haskell. The main motivation at this level is to teach the
correspondence between parsers and grammars, and to provide a high-level parser
tool also for programmers who do not know Haskell.

One concern about using the BNF Converter was that students would not really
learn parsing, but just to write grammars. However, students writing their parsers
in YACC are equally isolated from the internals of LR parsing as those writing in
LBNF. In fact, as learning the formalism takes less time in the case of LBNF, the
teacher can allocate more time for explaining how an LR parser works.

Real-World Languages.

Students in a compiler class usually implement toy languages. What about real-
world languages? As an experiment, a complete LBNF definition of ANSI C, with
[15] as reference, was written.4 The result was a complete front-end processor for
ANSI C, with the exception, mentioned in [15] of type definitions, which have to
be treated with a preprocessor. The grammar has 229 LBNF rules and 15 token
definitions (to deal with different numeral literals, such as octals and hexadecimals).

The BNF Converter has also been applied in an industrial application producing
a compiler for a telecommunications protocol description language. [4]

Another real-world example is the object-oriented specification language OCL
[20].5 Finally, the BNF Converter itself is implemented by using modules generated
from an LBNF grammar of the LBNF formalism.

A Case Study in Language Prototyping.

A strong case for BNF Converter is the prototyping of new languages. It is easy to
add and remove language features, and to test the updated language immediately.
Since standard tools are used, the step from the prototype to a production-quality
front end is small, typically involving some fine-tuning of the abstract syntax and
the pretty printer. We have a large-scale experience of this in creating a new version
of the language GF (Grammatical Framework, [19]).

The main novelties added to GF were a module system added on top of the old
GF language, and a lower-level language GFC, playing the role of “object code”
generated by the GF compiler. The GF language has constructions mostly familiar
from functional programming languages, and the size of the full grammar is similar
to ANSI C; GFC is about half this size. We wrote the LBNF grammar from scratch,
one motivation being to obtain reliable documentation of GF. This work took a few
hours. We then used the skeleton file to translate the generated abstract syntax
into the existing hand-written Haskell datatypes; in this way, we did not need to
change the later phases of the existing compiler (apart from the changes due to new
language features). In a couple of days, we had a new parser accepting all old GF
files as well as files with the new language features. Working with later compilation
phases suggested some changes in the new features, such as adding and removing
type annotations. Putting the changes in place never required changing other things
than the LBNF grammar and some clauses in the skeleton-based translator.

4BSc thesis of Ulf Persson at Chalmers.
5Work by Kristofer Johannisson at Chalmers (private communication).

53



The development of GFC was different, since the language was completely new.
The crucial feature was the symmetry between the parser and the pretty printer.
The GF compiler generates GFC, but it also needs to parse GFC, so that it can
use precompiled modules instead of source files. It was reassuring to know that the
parser and the pretty printer completely matched. As a last step, we modified the
rendering function of the GFC pretty printer so that it did not generate unnecessary
spaces; GFC code is not supposed to be read by humans. This step initially created
unparsable code (due to some necessary spaces having been omitted), which was
another proof of the value of automatically generated pretty-printers.

In addition to the GF compiler written in Haskell, we have been working on
GF-based applets (“gramlets”) written in Java. These applications use precompiled
GF. With the Java parser generated by the BNF Converter, we can guarantee that
the GFC code generated by the Haskell pretty-printer can be read in by the Java
application.

Related Work.

The BNF Converter adds a level of abstraction to the YACC [14] tradition of
compiler compilers, since it compiles a yet higher-level notation into notations on
the level of YACC. Another system on this level up from YACC is Cactus [17],
which uses an EBNF-like notation to generate front ends in Haskell and C. Unlike
the BNF Converter, Cactus aims for completeness, and the notation is therefore
more complex than LBNF. It is not possible to extract a pretty printer from a
Cactus grammar, and Cactus does not generate documentation.

The Zephyr definition language [5] defines a portable format for abstract syntax
and translates it into SML, Haskell, C, C++, Java, and SGML, together with
functions for displaying syntax trees. It does not support the definition of concrete
syntax.

In general, compiler tools almost invariably opt for expressive power rather
than declarativity and simplicity. The situation is different in linguistics, where
the declarativity and reversibility (i.e. usability for both parsing and generation)
of grammar formalisms are highly valued. A major example of this philosophy
are Definite Clause Grammars (DCG) [18]. Since DCGs are usually implemented
as an embedded language in Prolog, features of full Prolog are sometimes smug-
gled into DCG grammars; but this is usually considered harmful since it destroys
declarativity.

3.9 Conclusions and Future Work

BNF Converter is a tool implementing the Labelled BNF grammar formalism
(LBNF). Given that a programming language is “well-behaved”, in a rather in-
tuitive sense, an LBNF grammar is the only source that is needed to implement a
front end for the language, together with matching LaTeX documentation. Since
LBNF is purely declarative, the implementation can be generated in different lan-
guages: these currently include Haskell, Java, C++, and C, each with their standard
parser and lexer tools. Depending on the tools, the size of the generated code is
typically 50–100 times the size of the LBNF source.

The approach has proven to be useful both in teaching and in language proto-
typing. As for legacy real-world languages, complete definitions have so far been

54



written for C and OCL. Often a language is almost definable, but has some ex-
otic features that would require stronger tools. We have, however, opted to keep
LBNF simple, at the expense of expressivity; and we believe that there are many
good reasons behind a trend toward more and more well-behaved programming
languages.

One frequent request has been a possibility to retain some of the position in-
formation in the abstract syntax tree, so that error messages from later compiler
phases can be linked to the source code. This has been partly solved by extending
the token pragma with the keyword position that enable position information to
be retained in that particular token. However, further generalizations are needed
at this point. Other requests are increased control of the generated abstract syntax
and some means of controlling the output of the pretty-printing.

55



Bibliography

[1] A. Appel. Modern Compiler Implementation in C. Cambridge University
Press, 1998.

[2] A. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, 1998.

[3] A. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

[4] C. Däldborg and O. Noreklint. ASN.1 Compiler. Master’s Thesis, Department
of Computing Science, Chalmers University of Technology, 2004.

[5] Andrew W. Appel Jeff L. Korn Daniel C. Wang and Christopher S. Serra. The
zephyr abstract syntax description language. Proceedings of the Conference on
Domain-Specific Languages, 1997.

[6] C. Dornan. Alex: a Lex for Haskell Programmers, 1997.
http://www.cs.ucc.ie/dornan/alex.html.

[7] C. Dornan. JLex: A Lexical Analyzer Generator for Java, 2000.
http://www.cs.princeton.edu/ appel/modern/java/JLex/.

[8] M. Forsberg, P. Gammie, M. Pellauer, and A. Ranta. BNF Converter site.
Program and documentation, http://www.cs.chalmers.se/~markus/BNFC/,
2004.

[9] M. Forsberg and A. Ranta. Labelled BNF: a highlevel formalism for defining
well-behaved programming languages. Proceedings of the Estonian Academy
of Sciences: Physics and Mathematics, 52:356–377, 2003. Special issue on
programming theory edited by J. Vain and T. Uustalu.

[10] Free Software Foundation. Bison - GNU Project, 2003.
http://www.gnu.org/software/bison/bison.html.

[11] Free Software Foundation. Flex - GNU Project, 2003.
http://www.gnu.org/software/flex/flex.html.

[12] E. Gamma, R. Hehn, R. Johnson, and J. Viissides. Design Patterns. Addison
Wesley, 1995.

[13] Scott E. Hudson. CUP Parser Generator for Java, 1999.
http://www.cs.princeton.edu/ appel/modern/java/CUP/.

[14] S. C. Johnson. Yacc — yet another compiler compiler. Technical Report
CSTR-32, AT & T Bell Laboratories, Murray Hill, NJ, 1975.

56



[15] B.W. Kernighan and D.M. Ritchie. The C Programming Language. Prentice-
Hall, Englewood Cliffs, New Jersey, USA, 1988. 2nd edition.

[16] S. Marlow. Happy, The Parser Generator for Haskell, 2001.
http://www.haskell.org/happy/.

[17] N. Martinsson. Cactus (Concrete- to Abstract-syntax Conversion Tool
with Userfriendly Syntax) . Master’s Thesis in Computer Science, 2001.
http://www.mdstud.chalmers.se/~mdnm/cactus/6.

[18] F. Pereira and D. Warren. Definite clause grammars for language analysis—a
survey of the formalism and a comparison with augmented transition networks.
Artificial Intelligence, 13:231–278, 1980.

[19] A. Ranta. Grammatical Framework: A Type-Theoretical Grammar Formal-
ism. Journal of Functional Programming, 2004.

[20] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling
with UML. Addison-Wesley, 1999.

57



Chapter 4

Paper III: Demonstration
Abstract: BNF Converter

Markus Forsberg and Aarne Ranta
Department of Computing Science

Chalmers University of Technology and the University of Gothenburg
SE-412 96 Gothenburg, Sweden
{markus, aarne}@cs.chalmers.se

Abstract

We will demonstrate BNFC (the BNF Converter) [8, 7], a multi-lingual compiler
tool. BNFC takes as its input a grammar written in LBNF (Labelled BNF) nota-
tion, and generates a compiler front-end (an abstract syntax, a lexer, and a parser).
Furthermore, it generates a case skeleton usable as the starting point of back-end
construction, a pretty printer, a test bench, and a LATEX document usable as lan-
guage specification.

The program components can be generated in Haskell, Java, C and C++ and
their standard parser and lexer tools. BNFC itself was written in Haskell.

The methodology used for the generated front-end is based on Appel’s books on
compiler construction [3, 1, 2]. BNFC has been used as a teaching tool in compiler
construction courses at Chalmers. It has also been applied to research-related
programming language development, and in an industrial application producing a
compiler for a telecommunications protocol description language [4].

BNFC is freely available under the GPL license at its website and in the testing
distribution of Debian Linux.

4.1 Demo overview

The demo will consists of a brief explanation of the LBNF source format, followed
by instructions on how to compile LBNF source format into a front-end in Haskell,
Java, C, and C++. The rest of the demonstration will consist of explaining the
generated code for Haskell.

58



4.2 Goals and limits

The central goals of BNFC are

• to minimize the effort needed for compiler front-end construction

• to encourage clean and simple language design

• to make front-end definitions independent of implementation language and
thus portable

The LBNF grammar formalism can be learnt in a few minutes by anyone who
knows ordinary BNF. The main addition is that each grammar rule has a label,
which is used as a constructor of a syntax tree. No semantic actions other than tree
construction are allowed. Therefore the formalism is declarative and portable, and
a pretty-printer can be derived from the same grammar as the parser. In addition
to syntactic rules, LBNF provides a regular expression notation for defining lexical
structure, and some pragmatic declarations defining features such as comments.

Since semantic actions are banned, BNFC can only describe languages that
are context-free. The lexer must be finite-state and neatly separated from the
parser. Even though these requirements are widely propagated in compiler text
books, many real-world languages have features that do not quite conform to them.
However, practice has shown that such problems can often be overcome by prepro-
cessing. For example, layout syntax can be handled in BNFC by adding a processing
level between the lexer and the parser.

4.3 An example grammar

We will now give a short example to give a taste of what the language implementer
has to supply, and what BNFC generates. The example grammar is a subset of the
Prolog, known as pure Prolog.

Db . Database ::= [Clause] ;

Fact . Clause ::= Predicate ;

Rule . Clause ::= Predicate ":-" [Predicate] ;

APred . Predicate ::= Atom ;

CPred . Predicate ::= Atom "(" [Term] ")" ;

TAtom . Term ::= Atom ;

VarT . Term ::= Var ;

Complex . Term ::= Atom "(" [Term] ")" ;

terminator Clause "." ;

separator nonempty Predicate "," ;

separator nonempty Term "," ;

token Var ((upper | ’_’) (letter | digit | ’_’)*) ;

token Atom (lower (letter | digit | ’_’)*) ;

comment "%" ;

comment "/*" "*/" ;

The grammar shows a couple of things that go beyond the basic idea
of labelled BNF rules and regular expressions: a special syntax [C] for
polymorphic lists, to avoid cluttering the AST:s with monomorphic lists,

59



as well as shorthands for defining the concrete syntax of a list in terms of
its terminator or separator. In addition, LBNF has a notion of precedence
levels expressed by integer indices attached to nonterminals. A complete
reference of the LBNF language can be found on the BNFC website [7].

4.4 Compiling a grammar

Assuming that the grammar of the previous section is contained in a file
named Prolog.cf, a Haskell front-end is compiled by issuing the following
command:

bnfc -m -haskell Prolog.cf

This command generates the following file:

• AbsProlog.hs: Algebraic datatypes for the AST:s

• LexProlog.x: Alex [6] lexer (v1.1 and v2.0)

• ParProlog.y: Happy [9] parser

• PrintProlog.hs: pretty printer

• SkelProlog.hs: AST traversal skeleton

• TestProlog.hs: test bench (a program that parses a file and displays
the AST and the pretty-printed program)

• Makefile: an easy way to compile the test bench

• DocProlog.tex: language documentation in LATEX

For C and C++, similar files are generated but with slightly different
names. For Java, many more files are generated, because the abstract syntax
definition consists of separate classes for each nonterminal and constructor,
following the methodology of Appel [2].

Depending on target language, the generated code is 10–100 times the
size of the LBNF source. Yet it isn’t hopelessly ugly or low-level, but looks
rather similar to hand-written code that follows the chosen compiler writing
discipline.

4.5 Related work

Cactus [10], uses an EBNF-like notation to generate front ends in Haskell
and C. Cactus is more powerful than BNFC, which makes its notation more
complex. Cactus does not generate pretty printers and language documents.

60



The Zephyr language [5] is portable format for abstract syntax translat-
able into SML, Haskell, C, C++, Java, and SGML, together with functions
for displaying syntax trees. Zephyr does not support the definition of con-
crete syntax.

4.6 When to use BNFC

BNFC has proved useful as a compiler teaching tool. It encourages clean
language design and declarative definitions. But it also lets the teacher
spend more time on back-end construction and/or the theory of parsing than
traditional compiler tools, which require learning tricky and complicated
notations.

BNFC also scales up to full-fledged language definitions. Even though
real-world languages already have compilers generating machine code, it can
be difficult to extract abstract syntax from them. A BNFC-generated parser,
case skeleton, and pretty printer is a good starting point for programs doing
some new kind of transformation or translation on an existing language.

However, the clearest case for BNFC is the development of new lan-
guages. It is easy to get started: just write a few lines of LBNF, run bnfc,
and apply the Makefile to create a test bench. Adding or changing a lan-
guage construct is also easy, since changes only need to be done in one file.
When the language design is complete, the implementor perhaps wants to
change the implementation language; no work is lost, since the front-end
can be generated in a new target language, Finally, when the language im-
plementation is ready to be given to users, a reliable and human-readable
language definition is ready as well.

4.7 Bio section

Markus Forsberg is an PhD student at the Swedish Graduate School of
Language Technology (GSLT) positioned at the department of Computing
Science at Chalmers University of Technology and the University of Gothen-
burg. Aarne Ranta is an associative professor at the same department.

Forsberg and Ranta started the development of the BNF Converter in
2002, as a tool generating Haskell. It was retargeted to C, C++, an Java
in 2003 by Michael Pellauer (at Chalmers). Later contributors are Björn
Bringert, Peter Gammie and Antti-Juhani Kaijanaho.

61



Bibliography

[1] A. Appel. Modern Compiler Implementation in C. Cambridge Univer-
sity Press, 1998.

[2] A. Appel. Modern Compiler Implementation in Java. Cambridge Uni-
versity Press, 1998.

[3] A. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, 1998.

[4] C. Däldborg and O. Noreklint. ASN.1 Compiler. Master’s Thesis,
Department of Computing Science, Chalmers University of Technology,
2004.

[5] A. W. A. J. L. K. Daniel C. Wang and C. S. Serra. The zephyr abstract
syntax description language. Proceedings of the Conference on Domain-
Specific Languages, 1997.

[6] C. Dornan. Alex: a Lex for Haskell Programmers, 1997.
http://www.cs.ucc.ie/dornan/alex.html.

[7] M. Forsberg, P. Gammie, M. Pellauer, and A. Ranta.
BNF Converter site. Program and documentation,
http://www.cs.chalmers.se/~markus/BNFC/, 2004.

[8] M. Forsberg and A. Ranta. Labelled BNF: a highlevel formalism for
defining well-behaved programming languages. Proceedings of the Es-
tonian Academy of Sciences: Physics and Mathematics, 52:356–377,
2003. Special issue on programming theory edited by J. Vain and T.
Uustalu.

[9] S. Marlow. Happy, The Parser Generator for Haskell, 2001.
http://www.haskell.org/happy/.

[10] N. Martinsson. Cactus (Concrete- to Abstract-syntax Conversion Tool
with Userfriendly Syntax) . Master’s Thesis in Computer Science, 2001.
http://www.mdstud.chalmers.se/~mdnm/cactus/6.

62



Chapter 5

Paper IV: Functional
Morphology

Markus Forsberg and Aarne Ranta
Department of Computing Science
Chalmers University of Technology
and the University of Gothenburg
{markus, aarne}@cs.chalmers.se

Abstract

This paper presents a methodology for implementing natural language mor-
phology in the functional language Haskell. The main idea behind is simple:
instead of working with untyped regular expressions, which is the state of the
art of morphology in computational linguistics, we use finite functions over
hereditarily finite algebraic datatypes. The definitions of these datatypes
and functions are the language-dependent part of the morphology. The
language-independent part consists of an untyped dictionary format which
is used for synthesis of word forms, and a decorated trie, which is used for
analysis.

Functional Morphology builds on ideas introduced by Huet in his com-
putational linguistics toolkit Zen, which he has used to implement the mor-
phology of Sanskrit. The goal has been to make it easy for linguists, who are
not trained as functional programmers, to apply the ideas to new languages.
As a proof of the productivity of the method, morphologies for Swedish,
Italian, Russian, Spanish, and Latin have already been implemented using
the library. The Latin morphology is used as a running example in this
article.

63



5.1 Introduction

This paper presents a systematic way of developing natural language mor-
phologies in a functional language. We think of functions and linguistic
abstractions as strongly related in the sense that given a linguistic abstrac-
tion, it is, in most cases, natural and elegant to express it as a function. We
feel that the methodology presented is yet another proof of this view.

An implementation of the methodology is presented, named Functional
Morphology [9]. It can be viewed as an embedded domain-specific language
in Haskell. Its basis are two type classes: Param, which formalizes the
notion of a parameter type, and Dict, which formalizes the notion of a
part of speech as represented in a dictionary. For these classes, Functional
Morphology gives generic Haskell functions for morphological analysis and
synthesis, as well as generation of code that presents the morphology in
other formats, including Xerox Finite State Tools and relational databases.

The outline of the paper is the following: The morphology task is de-
scribed in section 5.2, and then the contemporary approaches are discussed
in section 5.3. The main part of the paper, section 5.4, focuses on describing
the Functional Morphology library. We conclude in sections 5.5 and 5.6 with
some results and a discussion.

5.2 Morphology

A morphology is a systematic description of words in a natural language. It
describes a set of relations between words’ surface forms and lexical forms.
A word’s surface form is its graphical or spoken form, and the lexical form
is an analysis of the word into its lemma (also known as its dictionary
form) and its grammatical description. This task is more precisely called
inflectional morphology.

Yet another task, which is outside the scope of this paper, is derivational
morphology, which describes how to construct new words in a language.

A clarifying example is the English word functions’. The graphical form
functions’ corresponds to the surface form of the word. A possible lexical
form for the word functions’ is function +N +Pl +Gen. From the analysis
it can be read that the word can be analyzed into the lemma function, and
the grammatical description noun, in plural, genitive case.

A morphological description has many applications, to mention a few:
machine translation, information retrieval, spelling and grammar checking
and language learning.

A morphology is a key component in machine translation, assuming that
the aim is something more sophisticated than string to string translation.
The grammatical properties of words are needed to handle linguistic phe-
nomena such as agreement. Consider, for example, the subject-verb agree-

64



ment in English — Colorless green ideas sleep furiously, not *Colorless
green ideas sleeps furiously.

In information retrieval, the use of a morphology is most easily explained
through an example. Consider the case when you perform a search in a text
for the word car. In the search result, you would also like to find informa-
tion about cars and car’s, but no information about carts and careers. A
morphology is useful to do this kind of distinctions.

5.3 Implementations of Morphology

5.3.1 Finite State Technology

The main contemporary approach within computational morphology is finite
state technology - the morphology is described with a regular expression
[17, 26, 18, 2] that is compiled to a finite state transducer, using a finite
state tool. Some of the tools available are: the commercial tool XFST [29],
developed at Xerox, van Noord’s [28] finite state automata utilities, AT&T’s
[19] FSM library and Forsberg’s [7] FST Studio.

Finite state technology is a popular choice since finite state transducers
provide a compact representation of the implemented morphology, and the
lookup time is close to constant in the size of the lexicon.

Finite state technology is based on the notion of a regular relation. A
regular relation is a set of n-tuples of words. Regular languages are a spe-
cial case, with n = 1. Morphology tools such as XFST work with 2-place
relations. They come with an extended regular expression notation for easy
manipulation of symbol and word pairs. Such expressions are compiled into
finite-state transducers, which are like finite-state automata, but their arcs
are labelled by pairs of symbols rather than just symbols. Strings consist-
ing of the first components of these pairs are called the upper language of
the transducer, and strings consisting of the second components are called
the lower language. A transducer is typically used so that the upper lan-
guage contains structural descriptions of word forms and the lower language
contains the forms themselves.

A trivial example of a regular relation is the description of the inflection
of three English nouns in number. The code is XFST source code, where
the | is the union operator, and .x. is the cross product of the strings.
Concatenation is expressed by juxtaposition.

NOUN = "table" | "horse" | "cat"

INFL = NOUN .x. "Sg" | NOUN "s" .x. "Pl"

If a transducer is compiled from this regular relation, and applied upward
with the string "tables", it will return {”Pl”}. If the built transducer is

65



applied downward with the string "Sg", it will return {”table”, ”horse”,
”cat”}.

One problem with finite-state tranducers is that cycles (corresponding
to Kleene stars in regular expressions), can appear anywhere in them. This
increases the complexity of compilation so that it can be exponential. Com-
piling a morphological description to a transducer has been reported to last
several days, and sometimes small changes in the source code can make a
huge difference. Another problem is that transducers cannot generally be
made deterministic for sequences of symbols (they are of course determinis-
tic for sequences of symbol pairs). This means that analysis and synthesis
can be worse than linear in the size of the input.

5.3.2 The Zen Linguistic Toolkit

Huet has used the functional language Caml to build a Sanskrit dictionary
and morphological analysis and synthesis. [13]. He has generalized the
ideas used for Sanskrit to a toolkit for computational linguistics, Zen [14].
The key idea is to exploit the expressive power of a functional language to
define a morphology on a high level, higher than regular expressions. Such
definitions are moreover safe, in the sense that the type checker guarantees
that all words are defined correctly as required by the definitions of different
parts of speech.

The analysis of words in Zen is performed by using tries. A trie is a spe-
cial case of a finite-state automaton, which has no cycles. As Huet points
out, the extra power added by cycles is not needed for the morphological
description inside words, but, at most, between words. This extra power is
needed in languages like Sanskrit where word boundaries are not visible and
adjacent words can affect each other (this phenomenon is known as sandhi).
It is also needed in languages like Swedish where compound words can be
formed almost ad libitum, and words often have special forms used in com-
pounds. Compositions of tries, with cycles possible only on word boundaries,
have a much nicer computational behaviour than full-scale transducers.

5.3.3 Grammatical Framework

The Grammatical Framework GF [25] is a special-purpose functional lan-
guage for defining grammars, including ones for natural languages. One
part of a grammar is a morphology, and therefore GF has to be capable of
defining morphology. In a sense, this is trivial, since morphology requires
strictly less expressive power than syntax (regular languages as opposed to
context-free languages and beyond). At the same time, using a grammar
formalism for morphology is overkill, and may result in severely suboptimal
implementations.

66



One way to see the Functional Morphology library described in this pa-
per is as a fragment of GF embedded in Haskell. The Param and Dict

classes correspond to constructs that are hard-wired in GF: parameter types
and linearization types, respectively. Given this close correspondence, it
is no wonder that it is very easy to generate GF code from a Functional
Morphology description. On the other hand, the way morphological anal-
ysis is implemented efficiently using tries has later been adopted in GF, so
that the argument on efficiency is no longer so important. Thus one can
see the morphology fragment of GF as an instance of the methodology of
Functional Morphology. However, complicated morphological rules (such as
stem-internal vowel changes) are easier to write in Haskell than in GF, since
Haskell provides more powerful list and string processing than GF.

5.4 Functional morphology

5.4.1 Background

The goal of our work is to provide a freely available open-source library that
provides a high level of abstraction for defining natural language morpholo-
gies. The examples used in this article are collected from Latin morphology.
Our Latin morphology is based on the descriptions provided by [20, 6, 16, 3].

Our work is heavily influenced by Huet’s functional description of San-
skrit [13] and his Zen Toolkit [14]. The analyzer provided by Functional
Morphology can be seen as a Haskell version of Huet’s “reference imple-
mentation” in Caml. At the same time, we aim to provide a language-
independent high-level front-end to those tools that makes it possible to
define a morphology with modest training in functional programming.

The idea of using an embedded language with a support for code gener-
ation is related to Claessen’s hardware description language Lava [5], which
is compiled into VHDL. For the same reasons as it is important for Lava
to generate VHDL—the needs of the main stream community—we generate
regular expressions in the XFST and LEXC formats.

Functional Morphology is based on an old idea, which has been around
for over 2000 years, that of inflection tables. An inflection table captures an
inflectional regularity in a language. A morphology is a set of tables and
a dictionary. A dictionary consists of lemmas, or dictionary forms, tagged
with pointers to tables.

An inflection table displaying the inflection of regular nouns in English,
illustrated with the lemma function, is shown below.

Case

Number Nominative Genitive

Singular function function’s

Plural functions functions’

67



Different ways of describing morphologies were identified by Hockett [10]
in 1950’s. The view of a morphology as a set of inflection tables he calls
word and paradigm. The paradigm is an inflection table, and the word is
an example word that represent a group of words with the same inflection
table.

In a sense, the research problem of describing inflectional morphologies
is already solved: how to fully describe a language’s inflectional morphology
in the languages we studied is already known. But the are still problematic
issues which are related to the size of a typical morphology. A morphology
covering a dictionary of a language, if written out in full form lexicon format,
can be as large as 1-10 million words, each tagged with their grammatical
description.

The size of the morphology demands two things: first, we need an ef-
ficient way of describing the words in the morphology, generalize as much
as possible to minimize the effort of implementing the morphology, and sec-
ondly, we need a compact representation of the morphology that has an
efficient lookup function.

5.4.2 Methodology

The methodology suggests that paradigms, i.e. inflection tables, should be
defined as finite functions over an enumerable, hereditarily finite, algebraic
data type describing the parameters of the paradigm. These functions are
later translated to a dictionary, which is a language-independent datastruc-
ture designed to support analyzers, synthesizers, and generation of code in
other formats than Haskell.

All parameter types are instances of the Param class, which is an exten-
sion of the built-in Enum and Bounded class, to be able to define enumerable,
finite types over hierarchical data types.

Parts of speech are modelled by instances of the class Dict, which auto-
mate the translation from a paradigm to the Dictionary type.

5.4.3 System overview

A Functional Morphology system consists of two parts, one language depen-
dent part, and one language independent part, illustrated in figure 5.1.

The language dependent part is what the morphology implementor has
to provide, and it consists of a type system, an inflection engine and a
dictionary. The type system gives all word classes and their inflection and
inherent parameters, and instances of the Param class and the Dict class.
The inflection machinery defines all valid inflection tables, i.e. all paradigms,
as finite functions. The dictionary lists all words in dictionary form with its
paradigm in the language.

68



Analyzer

Synthesizer

Translators

Dictionary format

Functional Morphology
API

Morphology

Language
Language

IndependentDependent

Figure 5.1: Functional Morphology system overview

Defining the type system and the inflection machinery can be a demand-
ing task, where you not only need to be knowledgeable about the language
in question, but also have to have some understanding about functional pro-
gramming. The libraries provided by Functional Morphology simplifies this
step.

However, when the general framework has been defined, which is actually
a new library built on top of ours, it is easy for a lexicographer to add new
words, and this can be done with limited or no knowledge about functional
programming. The lexicographer does not even have to be knowledgeable
about the inner workings of a morphology, it is sufficient that she knows the
inflectional patterns of words in the target language.

5.4.4 Technical details

Parameter types

In grammars, words are divided into classes according to similarity, such as
having similar inflection patterns, and where they can occur and what role
they play in a sentence. Examples of classes, the part of speech, are nouns,
verbs, adjectives and pronouns.

Words in a class are attributed with a set of parameters that can be
divided into two different kinds of categories: inflectional parameters and
inherent parameters.

Parameters are best explain with an example. Consider the Latin noun
causa (Eng. cause). It is inflected in number and case, i.e. number and case
are the inflectional parameters. It also has a gender, which is an inherent
parameter. The inflection of causa in plural nominative is causae, but it has
feminine gender.

These parameters are described with the help of Haskell’s data types.
For example, to describe the parameters for Latin noun, the types Gender,
Case and Number are introduced.

data Gender = Feminine |

Masculine |

Neuter

69



deriving (Show,Eq,Enum,Ord,Bounded)

data Case = Nominative |

Genitive |

Dative |

Accusative |

Ablative |

Vocative

deriving (Show,Eq,Enum,Ord,Bounded)

data Number = Singular |

Plural

deriving (Show,Eq,Enum,Ord,Bounded)

The inflectional parameter types Case and Number are combined into
one type, NounForm, that describes all the inflection forms of a noun. Note
that Gender is not part of the inflection types, it is an inherent parameter.

data NounForm = NounForm Number Case

deriving (Show,Eq)

The parameter types of a language are language-dependent. A class
Param for parameters has been defined, to make it possible to define language
independent methods, i.e. implement generic algorithms.

class (Eq a, Show a) ⇒ Param a where

values :: [a]

value :: Int → a

value0 :: a

prValue :: a → String

value n = values !! n

value0 = value 0

prValue = show

The most important method — the only one not defined by default — is
values, giving the complete list of all objects in a Param type. The parame-
ter types are, in a word, hereditarily finite data types: not only enumerated
types but also types whose constructors have arguments of parameter types.

An instance of Param is easy to define for bounded enumerated types by
the function enum.

enum :: (Enum a, Bounded a) ⇒ [a]

enum = [minBound .. maxBound]

The parameters of Latin nouns are made an instance of Param by the
following definitions:

70



instance Param Gender where values = enum

instance Param Case where values = enum

instance Param Number where values = enum

instance Param NounForm where

values =

[NounForm n c | n <- values ,

c <- values]

prValue (NounForm n c) =

unwords $ [prValue n, prValue c]

The default definition for prValue has been redefined for NounForm to
remove the NounForm constructor. Usually, a more sophisticated printing
scheme is preferred, using a particular tag set, i.e. adopting a standard for
describing the parameters of words.

Latin nouns can now be defined as a finite function, from a NounForm
to a String. The choice of String as a return type will be problematized
in section 5.4.4 and another type, Str, will be introduced.

type Noun = NounForm -> String

More generally, a finite function in Functional Morphology, is a function
f from a parameter type P to strings.

f :: P -> String

Note that the finite functions have a single argument. This is, however,
not a limitation, because we can construct arbitrarily complex single types
with tuple-like constructors.

Type hierarchy

A naive way of describing a class of words is by using the cross product of all
parameters. This would in many languages lead to a serious over-generation
of cases that do not exist in the language.

An example is the Latin verbs, where the cross product of the inflection
parameters generates 1260 forms (three persons, two numbers, six tenses,
seven moods and five cases1), but only 147 forms actually exist, which is
just about a ninth of 1260.

This problem is easily avoided in a language like Haskell that has al-
gebraic data types, where data types are not only enumerated, but also
complex types with constructors that have type parameters as arguments.

The type system for Latin verbs can be defined with the data types
below, that exactly describes the 147 forms that exist in Latin verb conju-
gation:

1The verb inflection in case only appears in the gerund and supine mood, and only
some of the six cases are possible.

71



data VerbForm =

Indicative Person Number Tense Voice |

Infinitive TenseI Voice |

ParticiplesFuture Voice |

ParticiplesPresent |

ParticiplesPerfect |

Subjunctive Person Number TenseS Voice |

ImperativePresent Number Voice |

ImperativeFutureActive Number PersonI |

ImperativeFuturePassiveSing PersonI |

ImperativeFuturePassivePl |

GerundGenitive |

GerundDative |

GerundAcc |

GerundAbl |

SupineAcc |

SupineAblative

This representation gives a correct description of what forms exist, and
it is hence linguistically more satisfying than a cross-product of features.
The type system moreover enables a completeness check to be performed.

Tables and finite functions

The concept of inflection tables corresponds intuitively, in a programming
language, to a list of pairs. Instead of using list of pairs, a functional coun-
terpart of a table — a finite function could be used, i.e. a finite set of pairs
defined as a function.

To illustrate the convenience with using finite functions instead of tables,
consider the inflection table of the Latin word rosa (Eng. rose):

Singular Plural
Nominative rosa rosae
Vocative rosa rosae
Accusative rosam rosas
Genitive rosae rosarum
Dative rosae rosis
Ablative rosa rosis

The word has two inflection parameters, case and number, that, as dis-
cussed in section 5.4.4, can be described in Haskell with algebraic data types.

data Case = Nominative | Vocative |

Accusative | Genitive |

Dative | Ablative

data Number = Singular | Plural

data NounForm = NounForm Case Number

72



The inflection table can be viewed as a list of pairs, where the first
component of a pair is an inflection parameter, and the second component is
an inflected word. The inflection table of rosa is described, in the definition
of rosa below, as a list of pairs.

rosa :: [(NounForm,String)]

rosa =

[

(NounForm Singular Nominative,"rosa"),

(NounForm Singular Vocative,"rosa"),

(NounForm Singular Accusative,"rosam"),

(NounForm Singular Genitive,"rosae"),

(NounForm Singular Dative,"rosae"),

(NounForm Singular Ablative,"rosa"),

(NounForm Plural Nominative,"rosae"),

(NounForm Plural Vocative,"rosae"),

(NounForm Plural Accusative,"rosas"),

(NounForm Plural Genitive,"rosarum"),

(NounForm Plural Dative,"rosis"),

(NounForm Plural Ablative,"rosis")

]

The type NounForm is finite, so instead of writing these kinds of tables,
we can write a finite function that describes this table more compactly.
We could even go a step further, and first define a function that describes
all nouns that inflects in the same way as the noun rosa, i.e. defining a
paradigm.

rosaParadigm :: String → Noun

rosaParadigm rosa (NounForm n c) =

let rosae = rosa ++ "e"

rosis = init rosa ++ "is"

in

case n of

Singular → case c of

Accusative → rosa + "m"

Genitive → rosae

Dative → rosae

_ → rosa

Plural → case c of

Nominative → rosae

Vocative → rosae

Accusative → rosa ++ "s"

Genitive → rosa ++ "rum"

_ → rosis

It may seem that not much has been gained, except that the twelve cases
have been collapsed to nine, and we have achieved some sharing of rosa and
rosae.

73



However, the gain is clearer when defining the paradigm for dea (Eng.
goddess), that inflects in the same way, with the exception of two case, plural
dative and ablative.

dea :: Noun

dea nf =

case nf of

NounForm Plural Dative → dea

NounForm Plural Ablative → dea

_ → rosaParadigm dea nf

where dea = "dea"

Given the paradigm of rosa, rosaParadigm, we can describe the inflec-
tion tables of other nouns in the same paradigm, such as causa (Eng. cause)
and barba (Eng. beard).

rosa, causa, barba :: Noun

rosa = rosaParadigm "rosa"

causa = rosaParadigm "causa"

barba = rosaParadigm "barba"

Turning a function into a table

The most important function of Functional Morphology is table, that trans-
lates a finite function into a list of pairs. This is done by ensuring that the
parameter type is of the Param class, which enables us to generate all forms
with the class function values.

table :: Param a ⇒ (a → Str) → [(a,Str)]

table f = [(v, f v) | v ← values]

A function would only be good for generating forms, but with table, the
function can be compiled into lookup tables and further to tries to perform
analysis as well.

String values

The use of a single string for representing a word is too restricted, because
words can have free variation, i.e., that two or more words have the same
morphological meaning, but are spelled differently. Yet another exception
is missing forms, some inflection tables may have missing cases.

Free variation exists in the Latin noun domus (Eng. home) in singular
dative, domui or domo, in plural accusative, domus or domos, and in plural
genitive, domuum or domorum.

Missing forms appear in the Latin noun vis (Eng. violence, force), a
noun that is defective in linguistic terms.

74



Singular Plural
Nominative vis vires
Vocative - vires
Accusative vim vires
Genitive - virium
Dative - viribus
Ablative vi viribus

These two observations lead us to represent a word with the abstract
type Str, which is simply a list of strings. The empty list corresponds to
the missing case.

type Str = [String]

The Str type is kept abstract, to enable a change of the representation.
The abstraction function is called strings.

strings :: [String] → Str

string = id

The normal case is singleton lists, and to avoid the increased complexity
of programming with lists of strings, we provide the mkStr function, that
promotes a String to a Str.

mkStr :: String → Str

mkStr = (:[])

The description of missing cases is handled with the constant nonExist,
which is defined as the empty list.

nonExist :: Str

nonExist = []

The inflection table of vis can be described with the function vis below.

vis :: Noun

vis (NounForm n c) =

case n of

Singular → case c of

Nominative → mkStr $ vi ++ "s"

Accusative → mkStr $ vi ++ "m"

Ablative → mkStr vi

_ → nonExist

Plural → mkStr $

case c of

Genitive → vir ++ "ium"

Dative → viribus

Ablative → viribus

_ → vir ++ "es"

where vi = "vi"

vir = vi ++ "r"

viribus = vir ++ "ibus"

75



String operations

Functional Morphology provides a set of string operation functions that
captures common phenomena in word inflections. Some of them are listed
below to serve as examples.

The string operations cannot be quite complete, and a morphology im-
plementer typically has to write some functions of her own, reflecting the
peculiarities of the target language. These new functions can be supplied
as an extended library, that will simplify the implementation of a similar
language. The goal is to make the library so complete that linguists with
little knowledge of Haskell can find it comfortable to write morphological
rules without recourse to full Haskell.

Here is a sample of string operations provided by the library.
The Haskell standard functions take and drop take and drop prefixes of

words. In morphology, it is much more common to consider suffixes. So the
library provides the following dual versions of the standard functions:

tk :: Int → String → String

tk i s = take (max 0 (length s - i)) s

dp :: Int → String → String

dp i s = drop (max 0 (length s - i)) s

It is a common phenomenon that, if the last letter of a word and the
first letter of an ending coincide, then one of them is dropped.

(+?) :: String → String → String

s +? e = case (s,e) of

(_:_,c:cs) | last s == c → s ++ cs

_ → s ++ e

More generally, a suffix of a word may be dependent of the last letter of
its stem.

ifEndThen :: (Char → Bool) → String → String

→ String → String

ifEndThen cond s a b = case s of

_:_ | cond (last s) → a

_ → b

A more language dependent function, but interesting because it is dif-
ficult to define on this level of generality with a regular expression, is the
umlaut phenomenon in German, i.e. the transformation of a word’s stem
vowel when inflected in plural.

findStemVowel :: String → (String, String, String)

findStemVowel sprick =

76



(reverse rps, reverse i, reverse kc)

where (kc, irps) = break isVowel $ reverse sprick

(i, rps) = span isVowel $ irps

umlaut :: String → String

umlaut man = m ++ mkUm a ++ n

where

(m,a,n) = findStemVowel man

mkUm v = case v of

"a" → "ä"

"o" → "ö"

"u" → "u"

"au" → "äu"

_ → v

The plural form of Baum, can be describe with the function baumPl.

baumPl :: String → String

baumPl baum = umlaut baum ++ "e"

Applying the function baumPl with the string "Baum" computes to the
correct plural form "Bäume".

Obviously, the function umlaut is a special case of a more general vowel
alternation function, that is present in many language, for instance, in En-
glish in the thematic alternation of verbs such as drink-drank-drunk :

vowAltern :: [(String,String)] → String → String

vowAltern alts man = m ++ a’ ++ n

where

(m,a,n) = findStemVowel man

a’ = maybe a id $ lookup a alts

A general lesson from vowel alternations is that words are not just
strings, but data structures such as tuples.2 If regular expressions are used,
these data structures have to be encoded as strings with special characters
used as delimiters, which can give rise to strange errors since there is no
type checking.

Exceptions

Exceptions are used to describe paradigms that are similar to another paradigm,
with the exception of one or more case. That is, instead of defining a com-
pletely new paradigm, we use the old definition only marking what is dif-
ferent. This is not only linguistically more satisfying, it saves a lot of work.

2E.g. in Arabic, triples of consonants are a natural way to represent the so-called roots
of words.

77



Four different kinds of exceptions, excepts, missing, only and variants,
are listed below.

The exception excepts, takes a finite function, or a paradigm in other
words, and list of exceptions, and forms a new finite function with with
exceptions included.

excepts :: Param a ⇒ (a → Str) → [(a,Str)] → (a → Str)

excepts f es p = maybe (f p) id $ lookup p es

The paradigm of dea defined in section 5.4.4 can be described with the
function dea using the exception excepts.

dea :: Noun

dea =

(rosaParadigm dea) ’excepts’

[(NounForm Plural c, dea) | c <- [Dative, Ablative]]

where dea = "dea"

The exception functions missing and only are used to express missing
cases in a table; missing enumerates the cases with missing forms, and only

is used for highly defective words, where it is easier to enumerate the cases
that actually exists.

missing :: Param a ⇒ (a → Str) → [a] → (a → Str)

missing f as = excepts f [(a,nonExist) | a ← as]

only :: Param a ⇒ (a → Str) → [a] → (a → Str)

only f as = missing f [a | a ← values, notElem a as]

The paradigm of vis described in section 5.4.4, can be described with
the only exception and the paradigm of hostis (Eng. enemy).

vis :: Noun

vis =

(hostisParadigm "vis") ’missing’

[

NounForm Singular c | c <- [Vocative, Genitive, Dative]

]

An often occurring exception is additional variants, expressed with the
function variants. That is, that a word is in a particular paradigm, but
have more than one variant in one or more forms.

variants :: Param a ⇒ (a → Str) → [(a,String)] →
(a → Str)

variants f es p =

maybe (f p) (reverse . (: f p)) $ lookup p es

78



Dictionary

The Dictionary type is the core of Functional Morphology, in the sense
that the morphology description denotes a Dictionary. The Dictionary

is a language-independent representation of a morphology, that is chosen to
make generation to other formats easy.

A Dictionary is a list of Entry, where an Entry corresponds to a specific
dictionary word.

type Dictionary = [Entry]

An Entry consists of the dictionary word, the part of speech (category)
symbol, a list of the inherent parameters, and the word’s, lacking a better
word, untyped inflection table.

type Dictionary = [Entry]

type Entry = (Dictionary_Word, Category,

[Inherent], Inflection_Table)

type Dictionary_Word = String

type Category = String

type Inherent = String

type Parameter = String

type Inflection_Table = [(Parameter,(Attr,Str))]

The Attr type and definitions containing this type concerns the handling
of composite forms, that will be explained later in section 5.4.6.

To be able to generate the Dictionary type automatically, a class Dict
has been defined. Only composite types, describing the inflection parameters
of a part of speech, should normally be an instance of the Dict class.

class Param a ⇒ Dict a where

dictword :: (a → Str) → String

category :: (a → Str) → String

defaultAttr :: (a → Str) → Attr

attrException :: (a → Str) → [(a,Attr)]

dictword f = concat $ take 1 $ f value0

category = const "Undefined"

defaultAttr = const atW

attrException = const []

Note that all class functions have a default definition, but usually we
have to at least give a definition of category, that gives the name of the
part of speech of a particular parameter type. It’s impossible to give a
reasonable default definition of category; it would require that we have
types as first class objects.

It may be surprising that category and defaultAttr are higher-order
functions. This is simply a type hack that forces the inference of the correct

79



class instance without the need to provide an object of the type. Normally,
the function argument is an inflection table (cf. the definition of entryI

below).
The most important function defined for types in Dict is entryI, which,

given a paradigm and a list of inherent features, creates an Entry. However,
most categories lack inherent features, so the function entry is used in most
cases, with an empty list of inherent features.

entryI :: Dict a ⇒ (a → Str) → [Inherent] → Entry

entryI f ihs = (dictword f, category f, ihs, infTable f)

entry :: Dict a ⇒ (a → Str) → Entry

entry f = entryI f []

Returning to the noun example, NounForm can be defined as an instance
of the class Dict by giving a definition of the category function.

instance Dict NounForm

where category _ = "Noun"

Given that NounForm is an instance of the Dict class, a function noun

can be defined, that translates a Noun into an dictionary entry, including
the inherent parameter Gender, and a function for every gender.

noun :: Noun → Gender → Entry

noun n g = entryI n [prValue g]

masculine :: Noun → Entry

masculine n = noun n Masculine

feminine :: Noun → Entry

feminine n = noun n Feminine

neuter :: Noun → Entry

neuter n = Noun n Neuter

Finally, we can define a set of interface functions that translates a dic-
tionary word into a dictionary entry: d2servus (Eng. servant, slave),
d1puella (Eng. girl) and d2donum (Eng. gift, present).

d2servus :: String -> Entry

d2servus = masculine . decl2servus

d1puella :: String -> Entry

d1puella = feminine . decl1puella

d2donum :: String -> Entry

d2donum s = neuter . decl2donum

80



Given these interface function, a dictionary with words can be cre-
ated. Note that the function dictionary is an abstraction function that
is presently defined as id.

latinDict :: Dictionary

latinDict =

dictionary $

[

d2servus "servus",

d2servus "somnus",

d2servus "amicus",

d2servus "animus",

d2servus "campus",

d2servus "cantus",

d2servus "caseus",

d2servus "cervus",

d2donum "donum",

feminine $ (d1puella "dea") ‘excepts‘

[(NounForm Plural c,"dea") | c <- [Dative, Ablative]]

]

The dictionary above consists of 11 dictionary entries, which defines a
lexicon of 132 full form words. Note that when using exceptions, the use of
interface functions has to be postponed. We could define exceptions on the
entry level, but we would then loose the type safety.

Even more productive are the interface functions for Latin verbs. Con-
sider the dictionary latinVerbs below, that uses the interface functions
v1amare (Eng. to love) and v2habere (Eng. to have).

latinVerbs :: Dictionary

latinVerbs =

dictionary $

[

v1amare "amare",

v1amare "portare",

v1amare "demonstrare",

v1amare "laborare",

v2habere "monere",

v2habere "admonere",

v2habere "habere"

]

The dictionary latinVerbs consists of 7 dictionary entries, that defines
a lexicon of as many as 1029 full form words.

External dictionary

When a set of interface functions have been defined, we don’t want to recom-
pile the system every time we add a new regular word. Instead, we define

81



an external dictionary format, with a translation function to the internal
Dictionary. The syntax of the external dictionary format is straightfor-
ward: just a listing of the words with their paradigms. The first entries of
the dictionary latinVerbs are written

v1amare amare

v1amare portare

v1amare demonstrare

v1amare laborare

Notice that the external dictionary format is a very simple special-purpose
language implemented on top of the morphology of one language. This is
the only language that a person extending a lexicon needs to learn.

Code generation

The Dictionary format, described in section 5.4.4, has been defined with
generation in mind. It is usually easy to define a translation to another for-
mat. Let us look at an example of how the LEXC source code is generated.
The size of the function prLEXC, not the details, is the interesting part. It is
just 18 lines. The functions not defined in the function, is part of Haskell’s
standard Prelude or the standard API of Functional Morphology.

prLEXC :: Dictionary → String

prLEXC = unlines . (["LEXICON Root",[]] ++) . (++ ["END",[]]) .

map (uncurry prLEXCRules) . classifyDict

prLEXCRules :: Ident → [Entry] → String

prLEXCRules cat entries =

unlines $ [[],"! category " ++ cat,[]] ++

(map (prEntry . noAttr) entries)

where

prEntry (stem,_,inhs,tbl) =

concat (map (prForm stem inhs) (existingForms tbl))

prForm stem inhs (a,b) =

unlines

[x ++ ":" ++ stem ++ prTags (a:inhs) ++ " # ;" | x <- b]

prTags ts =

concat

["+" ++ w | t <- ts, w <- words (prFlat t)]

altsLEXC cs =

unwords $ intersperse " # ;" [ s | s <- cs]

Currently, the following formats are supported by Functional Morphol-
ogy.

Full form lexicon .A full form lexicon is a listing of all word forms with
their analyses, in alphabetical order, in the lexicon.

Inflection tables. Printer-quality tables typeset in LATEX

GF grammar source code. Translation to a Grammatical Framework gram-
mar.

82



XML. An XML[27] representation of the morphological lexicon.

XFST source code. Source code for a simple, non-cyclic transducer in the
Xerox notation.

LEXC source code. Source code for LEXC format, a version of XFST
that is optimized for morphological descriptions.

Relational database. A database described with SQL source code.

Decorated tries. An analyzer for the morphology as a decorated trie.

CGI. A web server for querying and updating the morphological lexicon.3

5.4.5 Trie analyzer

The analyzer is a key component in a morphology system — to analyze a
word into its lemma and its grammatical description. Synthesizers are also
interesting, that is, given an analysis, produce the word form. In a trivial
sense, an analyzer already exists through the XFST/LEXC formats, but
Functional Morphology also provides its own analyzer.

Decorated tries is currently used instead of transducers for analysis in our
implementation. Decorated tries can be considered as a specialized version
of one of the languages in a transducer, that is deterministic with respect
to that language, hence prefix-minimal. If we have an undecorated trie, we
can also achieve total minimality by sharing, as described by Huet [15]; full-
scale transducers can even achieve suffix sharing by using decorated edges.
This approach has been used by Huet [13], when defining a morphology for
Sanskrit. The trie is size-optimized by using a symbol table for the return
value (the grammatical description).

5.4.6 Composite forms

Some natural languages have compound words — words composed from
other words. A typical example is the (outdated) German word for a com-
puter, Datenverarbeitungsanlage, composed from Daten, Verarbeitung, and
Anlage. If such words are uncommon, they can be put to the lexicon, but
if they are a core feature of the language (as in German), this productivity
must be described in the morphology. Highly inspired by Huet’s glue func-
tion [15], we have solved the problem by tagging all words with a special
type Attr that is just a code for how a word can be combined with other

3In a previous version, a CGI morphology web server was generated. Meijer’s [21] CGI
library was used, further modified by Panne. There exists a prototype web server [8] for
Swedish. However, the CGI implementation scaled up poorly, so it is no longer generated.
This is to be replaced by a SQL database and PHP.

83



words. At the analysis phase, the trie is iterated, and words are decomposed
according to these parameters.

The Attr type is simply a integer. Together with a set of constants
atW, atP, atWP and atS, we can describe how a word can be combined with
another. The atW for stand-alone words, atP for words that can only be a
prefix of other words, atWP for words that can be a stand-alone word and a
prefix, and finally, atS, for words that can only be a suffix of other words.

type Attr = Int

atW, atP, atWP, atS :: Attr

(atW, atP, atWP, atS) = (0,1,2,3)

As an example, we will describe how to add the productive question
particle ne in Latin, that can be added as a suffix to any word in Latin, and
has the interrogative meaning of a questioning the word.

We begin by defining a type for the particle, and instantiate it in Param.
The Invariant type expresses that the particle is not inflected.

data ParticleForm = ParticleForm Invariant

deriving (Show,Eq)

type Particle = ParticleForm -> Str

instance Param ParticleForm where

values = [ParticleForm p | p <- values]

prValue _ = "Invariant"

We continue by instantiating ParticleForm in Dict, where we also give
a definition for defaultAttr with atS, that expresses that the words of this
form can only appear as a suffix to another word, not as a word on its own.

instance Dict ParticleForm

where category _ = "Particle"

defaultAttr _ = atS

We then define an interface function particle and add ne to our dic-
tionary.

makeParticle :: String -> Particle

makeParticle s _ = mkStr s

particle :: String -> Entry

particle = entry . makeParticle

dictLat :: Dictionary

dictLat = dictionary $

[

84



...

particle "ne"

]

Analyzing the word servumne, the questioning that the object in a phrase
is a slave or a servant, gives the following analysis in Functional Morphology:

[ <servumne>

Composite:

servus Noun - Singular Accusative - Masculine

| # ne Particle - Invariant -]

5.5 Results

The following morphologies have been implemented in Functional Morphol-
ogy: a Swedish inflection machinery and a lexicon of 15,000 words [9]; a
Spanish inflection machinery + lexicon of 10,000 words [1]; major parts of
the inflection machinery + lexicon for Russian [4], Italian [24], and Latin [9].
Comprehensive inflection engines for Finnish and French have been written
following the same method but using GF as source language [23]

One interesting fact is that the Master students had very limited knowl-
edge of Haskell before they started their projects, but still managed to pro-
duce competitive morphology implementations.

An interface between morphology and syntax, through the Grammatical
Framework, exists. An implemented morphology can directly be used as a
resource for a grammatical description.

The analyzer tags words with a speed of 2k-50k words/second (depending
on how much compound analysis is involved), a speed that compares with
finite state transducers. The analyzer is often compiled faster than XFST’s
finite state transducers, because Kleene’s star is disallowed within a word
description.

5.6 Discussion

One way of viewing Functional Morphology is as a domain specific embedded
language [11, 12], with the functional programming language Haskell [22] as
host language.

There are a lot of features that make Haskell suitable as a host language,
to mention a few: a strong type system, polymorphism, class system, and
higher-order functions. Functional Morphology uses all of the mentioned
features.

One could wonder if the power and freedom provided by a general-
purpose programming language does not lead to problems, in terms of errors
and inconsistency. Functional Morphology avoids this by requiring from the

85



user that the definition denotes an object of a given type, i.e. the user has
full freedom to use the whole power of Haskell as long as she respects the
type system of Functional Morphology.

Embedding a language into another may also lead to efficiency issues
— an embedded language cannot usually compete with a DSL that has
been optimized for the given problem domain. This is avoided in Functional
Morphology by generating other formats which provide the efficiency needed.

A simple representation of the morphology in the core system has been
chosen, which enables easy generation of other formats. This approach
makes the framework more easily adaptable to future applications, which
may require new formats. It also enforces the single-source idea, i.e. a gen-
eral single format is used that generates the formats of interest. A single
source solves the problems of maintainability and inconsistency.

Programming constructs and features available in a functional framework
make it is easier to capture generalizations that may even transcend over
different languages. It is no coincidence that Spanish, French and Italian are
among the languages we have implemented: the languages’ morphology are
relatively close, so some of the type systems and function definitions could
be reused.

We believe that we provide a higher level of abstraction than the main-
stream tools using regular relations, which results in a faster development
and easier adaption. Not only does the morphology implementor have a nice
and flexible framework to work within, but she gets a lot for free through
the translators, and will also profit from further development of the system.

86



Bibliography

[1] I. Andersson and T. Söderberg. Spanish Morphology – implemented in
a functional programming language. Master’s Thesis in Computational
Linguistics, 2003. http://www.cling.gu.se/theses/finished.html.

[2] K. R. Beesley and L. Karttunen. Finite State Morphology. CSLI Pub-
lications, Stanford University, United States,, 2003.

[3] C. E. Bennett. A Latin Grammar. Allyn and Bacon, Boston and
Chicago, 1913.

[4] L. Bogavac. Functional Morphology for Russian. Master’s Thesis in
Computing Science, 2004.

[5] K. Claessen. An Embedded Language Approach to Hardware Description
and Verification. PhD thesis, Chalmers University of Technology, 2000.

[6] E. Conrad. Latin grammar. www.math.ohio-state.edu/~econrad/lang/latin.html,
2004.

[7] M. Forsberg. Fststudio. http://www.cs.chalmers.se/~markus/fstStudio

[8] M. Forsberg and A. Ranta. Svenska ord.
http://www.cs.chalmers.se/~markus/svenska, 2002.

[9] M. Forsberg and A. Ranta. Functional morphology.
http://www.cs.chalmers.se/~markus/FM, 2004.

[10] C. F. Hockett. Two models of grammatical description. Word, 10:210–
234, 1954.

[11] P. Hudak. Building domain-specific embedded languages. ACM Com-
puting Surveys, 28(4), 1996.

[12] P. Hudak. Modular domain specific languages and tools. In P. Devanbu
and J. Poulin, editors, Proceedings: Fifth International Conference on
Software Reuse, pages 134–142. IEEE Computer Society Press, 1998.

[13] G. Huet. Sanskrit site. Program and documentation,
http://pauillac.inria.fr/~huet/SKT/, 2000.

87



[14] G. Huet. The Zen Computational Linguistics Toolkit.
http://pauillac.inria.fr/~huet/, 2002.

[15] G. Huet. Transducers as lexicon morphisms, phonemic segmenta-
tion by euphony analysis, application to a sanskrit tagger. Available:
http://pauillac.inria.fr/~huet/FREE/, 2003.

[16] G. Klyve. Latin Grammar. Hodder & Stoughton Ltd., London, 2002.

[17] K. Koskenniemi. Two-level morphology: a general computational model
for word-form recognition and production. PhD thesis, University of
Helsinki, 1983.

[18] G. G. L. Karttunen, J-P Chanond and A. Schille. Regular expressions
for language engineering. Natural Language Engineering, 2:305–328,
1996.

[19] A. Labs-Research. At&t fsm library.
http://www.research.att.com/sw/tools/fsm/.

[20] J. Lambek. A mathematician looks at the latin conjugation. Theoretical
Linguistics, 1977.

[21] E. Meijer and J. van Dijk. Perl for swine: Cgi programming in haskell.
Proc. First Workshop on Functional Programming, 1996.

[22] S. Peyton Jones and J. Hughes. Report on the Programming Language
Haskell 98, a Non-strict, Purely Functional Language. Available from
http://www.haskell.org, February 1999.

[23] A. Ranta. Grammatical Framework Homepage, 2000–2004.
www.cs.chalmers.se/~aarne/GF/.

[24] A. Ranta. 1+n representations of Italian morphology. Essays
dedicated to Jan von Plato on the occasion of his 50th birthday,
http://www.valt.helsinki.fi/kfil/jvp50.htm, 2001.

[25] A. Ranta. Grammatical Framework: A Type-theoretical Grammar For-
malism. The Journal of Functional Programming, 14(2):145–189, 2004.

[26] M. K. Ronald M. Kaplan. Regular Models of Phonological Rule Sys-
tems. Computational lingustics, pages 331–380, 1994.

[27] The World Wide Web Consortium. Extensible Markup Language
(XML). http://www.w3.org/XML/, 2000.

[28] G. van Noord. Finite state automata utilities.
http://odur.let.rug.nl/~vannoord/Fsa/

88



[29] Xerox. The Xerox Finite-State Compiler.
http://www.xrce.xerox.com/competencies/content-analysis/fsCompiler/

89


