
A Type-Theoretic Approach to Generating Pictures and
Descriptions

Herbert Lange
Computer Science and Engineering

University of Gothenburg
herbert.lange@cse.gu.se

Abstract
Modern type theories (MTTs) find applica-
tions in many areas of natural language se-
mantics and give rise to reliable approaches
to natural language inference. In this pa-
per we present an approach to generate pic-
tures and natural language descriptions in
parallel based on a common type-theoretic
semantic representation. It uses the ex-
pressive power of modern type theory to
ground objects spatially. This grounded
representation can be used to generate
both pictorial and textual representations
giving rise to a controlled hybrid language.

1 Introduction
Using modern type theories (MTT), also called
constructive type theories, for natural language
semantics is an active branch of research with-
ing computational linguistics. It has been
shown that this kind of type theory is suit-
able to express interesting phenomena within
natural language semantics (Ranta, 1994). We
use MTT to ground objects spatially and use
this representation to generate both pictures
and natural language descriptions in parallel
in a controlled setting.

1.1 Modern type theory in natural
language semantics

Modern type theories go back to the work of Per
Martin-Löf (1972, 1984). His constructive type
theory is an important foundation in computer
science research on computer-assisted proofs.
Related type theories build the basis for proof
assistants such as Agda (Norell, 2007) and Coq
(Coquand and Huet, 1988). Work on using con-
structive type theory for natural language se-
mantics ranges back to the work by Sundholm
(1989) on generalized quantifiers and Ranta
(1994) on many aspects including anaphoric

expressions, such as the so-called donkey sen-
tences. Over the years many challenges of
natural language semantics have been in focus,
leading to systems for reliable natural language
inference using proof assistants (Bernardy and
Chatzikyriakidis, 2017; Chatzikyriakidis and
Bernardy, 2019).

1.2 Modern type theory in natural
language syntax

Another application of MTTs within compu-
tational linguistics is a syntactic framework
called Grammatical Framework (GF) (Ranta,
2009b, 2011). It uses a type-theory based ab-
stract representation of syntactic structures
together with language specific rules for sugar-
ing, also called linearization, to express these
abstract representation in concrete (natural)
languages. The sugaring operation is reversible
which means these language expressions can be
parsed back into abstract representations. Sev-
eral concrete languages can share the same set
of abstract representations, called an abstract
syntax. We will show how spatial relations can
be modeled as abstract representation within
modern type theory and use the methods of
sugaring to translate the abstract representa-
tions into both pictures and natural language
description of these pictures. The techniques
we present here can be implemented in either
GF or Agda in a very similar way. As a con-
sequence we can use GF for handling natural
language expressions and Agda for reasoning.
The implementation in both Agda and GF is
available online.1.

1.3 Related Work
This paper touches on several more or less re-
lated directions of research. We present a con-

1https://github.com/daherb/mulle-spatial

https://github.com/daherb/mulle-spatial


trolled hybrid language (Haralambous et al.,
2017), a unified controlled language to create
both natural language expressions and pictorial
representations. There has been some similar
efforts such as the work by Haralambous et al.
(2017) for creating nautical maps and map de-
scriptions in parallel. In general there has been
plenty of work on generating natural language
descriptions from concrete pictures or abstract
picture representations, e.g. (Chen et al., 2019).
What sets our work apart is the more unified
approach to abstract representation and lan-
guage generation. Finally, there have even been
previous attempt to use related type theories
to express spatial relations between objects, e.g.
Dobnik and Cooper (2013). However, their fo-
cus on robotics and modeling concrete object
placement in the real world makes their ap-
proach significantly different from our abstract
high-level approach.

2 Abstract Representation

One major idea behind the type theoretic for-
malization of spatial relations is the fact that
we can use dependent types, i.e. types that
depend on the objects of other types, to model
constraints (Ranta, 2011, Chapter 6). In this
case the constraints decide the placement of
objects in a virtual world. To keep this demon-
stration simple, we only support two objects
in our world at the same time.

2.1 The World

The world we use in our spatial representation
can be seen as a simplified world in the style
of the SHRDLU block world (Winograd, 1972).
We use a two-dimensional grid in which objects
can be placed. We use natural numbers to ad-
dress the cells and make sure that all objects
are placed on the grid. We also add constraints
on the object placement that are depending
on the shape of the objects as well as the re-
lationship between the objects. Following the
general concept of modeling constraints as de-
pendent types, we can already on the type level
express a constraint that guarantees that two
given coordinates are placed inside the grid.
This type, InRange, is a type depending on four
natural numbers. It has one constructor and if
we can construct a value with it, we know that
coordinates given by the numbers are valid in

our world.

2.2 The objects and relations
The set of all objects can be defined by enu-
merating them. The same is the case for the
relations we want to include. We currently in-
clude 8 objects and 7 relations. Some of these
objects have implicit properties such as having
to be placed at the bottom of the grid. Houses
and trees for example are supposed to be placed
on ground level. These properties will be en-
forced in a later step. Among the relations
we include, some are more general than others.
If something is besides of something else, it
can be either to the left or to the right and if
something is on top it can also be considered
above. The objects themselves are clustered
into classes of objects having similar proper-
ties. This could be for example all objects that
can be put inside other objects (InsideObject)
or all objects that can contain other objects
(OutsideObject). These classes are expressed by
dependent types depending on the object type.

2.3 Spatial Relations and Constraints
The most interesting part of the abstract repre-
sentation are the constraints to enforce proper
placements of the objects depending on the
objects and spatial relation involved. First we
have to make sure that the objects can actu-
ally be combined in the intended way. We do
not really want to put a house in the tree, ex-
cept if we plan to build a tree house which is
currently not supported. To enforce this level
of semantics we use the object classification
described above. Based on the object classes
we can define a new type that only guarantees
valid combinations. Each constructor combines
two object classes with a relation that works
between these objects. For example if we have
an InsideObject and an OutsideObject we can
use the relation rin. Sometimes we want to
handle certain objects independently of their
class. We can add specific constructors for
these cases. For example, we don’t want to put
people into other objects in general but people
in houses are quite common. This case can
be handled by a specific constructor. As soon
as we have established that the objects can be
combined in the way we want to, we have to
make sure that their coordinates are valid. We
can express these requirement using dependent



types again, specifically the type ValidPos de-
pending on the relation and the coordinates.
We have one constructor for each of the rela-
tions enforcing the specific constraints on the
coordinates. For the case of putting an object
inside another object, the two coordinates have
to be equal. In addition we enforce the fact
that most objects cannot float in thin air, so
the y coordinate of the container has to be 0
to place it on the ground. The constructors
also require an object of InRange, the type we
described previously that guarantees that the
coordinates are valid positions on the grid. For
the other relations different constraints on the
coordinates are enforced.

2.4 The scene
As a final step we build a scene. It consists of
two objects, their position, the spatial relation
between the objects and the two proof objects
showing that the relation is valid between the
objects and the positions are valid according
to their spatial relation and relative to the grid.
An example scene is shown in Listing 1.2

example : Scene
example =

constraintPlace operson ohouse 3 0 3 0
rin personinhouse
(validinpos (equal 3) (equal 0)

(equal 0) (inrange [...]))

Listing 1: Example scene

In the example scene we have the two ob-
jects operson and ohouse, the spatial relation
rin, the components of the coordinates rep-
resenting (3, 0) twice and finally the objects
telling us that we can put a person in the
house (personinhouse) and that the coordinates
work for putting the person in the house at this
position on the grid ((validinpos [...])) using
an object of type InRange as described above.
In English this scene would be expressed as the
person is in the house.

3 Sugaring

Sugaring is the translation from the abstract
representation into a concrete language follow-
ing Ranta (1994). These concrete languages
most often are natural languages such as En-
glish, German or Swedish. But the technique

2This example is slightly simplified to increase the
readability

is not limited to this. We show how we can
generate both natural language picture descrip-
tions as well as the pictures themselves from
the same representation.

3.1 Natural language generation
There has been a long-going effort on how to
express an extensive abstract syntax in GF in
various natural languages. This effort is called
the resource grammar library (RGL) (Ranta,
2009a) which is part of the GF distribution.
Compared to the RGL, the natural language
fragment we want to express is very limited.
However, we use the same methods and data
structures that proved effective for modeling
syntactic phenomena of natural languages. We
can use total functions from grammatical fea-
tures to implement word inflection and use
records to store relevant information. The nec-
essary grammatical features can be defined by
listing all their values exhaustively. These tech-
niques are relevant more or less independent of
the language but some features might be used
more extensively, for example if a language is
morphologically rich. We implemented the sug-
aring for both English and German and demon-
strate the main concepts for German. We start
the sugaring from objects of the Scene type and
apply the sugaring functions recursively. We
have seen an example in Section 2.4. Most of
the information stored in this object is not rel-
evant now, we only care about the objects and
the relation. The relation can just be repre-
sented by a string because prepositions are not
inflected. The object is represented as a record
because it has beside its string representation
also an inherent gender. Besides these two we
also need a representation of determiners, i.e.
the direct article, in German even though they
are not included in the abstract representation.
Determiners are inflected by gender and case
(see Listing 2).
The construction \ where in linDet is a com-
bination of lambda abstraction and pattern
matching to define the total function mapping
from the grammatical features to strings. In
the GF context record types such as LinDet
would be called linearization types and linDet
linearization functions. The linearization types
are used as intermediate representation in the
linearization or sugaring functions. With all
these types and functions we can define the



data Gender : Set
fem : Gender
masc : Gender
neutr : Gender

data Case : Set where
nom : Case
dat : Case

record LinDet : Set where
constructor lindet
field
detS : Gender -> Case -> String

linDet : LinDet
linDet = record { detS =

\ where
fem -> \ where

nom -> "die"
dat -> "der"

masc -> \ where
nom -> "der"
dat -> "dem"

neutr -> \ where
nom -> "das"
dat -> "dem"

Listing 2: Representation and sugaring of deter-
miners

sugaring of a scene by pattern matching on its
arguments to only extract the objects and re-
lation. We use the sugaring functions for these
components to get the relevant intermediate
representation. From the objects we get their
string and gender. To get a string from the
determiner we need to apply it to a gender
and a case value. The genders we get from
the objects and the case values from the posi-
tion in the sentence, nominative in the subject
position and dative after the preposition. Fi-
nally we concatenate the strings for the subject
determiner, the subject noun (i.e. the first ob-
ject), the verb, as well as the second determiner
and object. The verb itself is hard-coded to
the string ist because we only handle singular
objects requiring the third person verb form.
The result of sugaring the example into German
is the phrase die Person ist in dem Haus.

3.2 Picture generation

There are many ways of generating pictures.
For reasons of simplicity we create HTML code
placing icons in a grid of equally sized cells.
To generate the pictures from the same repre-
sentation we care about the objects and their
coordinates. The only relevance of the relation
is if one object is placed inside another. The
sugaring of an object is the icon to be used and

Figure 1: the person is in the house

the sugaring of a scene is a HTML page where
these icons are placed in the correct position.
The positions can be computed from the coor-
dinates and the size of the grid cells. When one
object is placed inside another we have to scale
down the object on the inside and center it.
Computations can either be executed within
Agda or offloaded to the web browser using
cascading style sheets. The resulting picture
of the example is shown in Figure 1.

4 Conclusion

We present a unified approach to generate pic-
tures and natural language description from
type-theoretic representations. Following Har-
alambous et al. (2017) our approach can be
seen as a controlled hybrid (visual/natural)
language. It is intended as a starting point for
a general framework to represent objects and
spatial relations between these objects. We
do not claim that the relations we model are
exhaustive and we are aware that the use of
spatial prepositions in natural language use is
not only motivated by the actual spatial place-
ment of objects but can also depend on use
of objects. (Dobnik and Cooper, 2013) give
as an example that the usage of above with
an umbrella implies the use as protection from
rain. However, in this article we cannot touch
on this issue.

A possible use case of our system could be
in computer-assisted language learning, for ex-
ample within the MULLE system (Lange and
Ljunglöf, 2018). Using pictures and picture de-
scriptions in parallel allows the creation of mul-
timodal exercises to practice the use of prepo-
sitions, a relevant skill when learning a new
language (Jarvis and Odlin, 2000). Another
interesting line of research would be to add
a temporal dimension and see how our work
can be combined with methods for temporal
modeling such as work by Fernando (2019).



References
Jean-Philippe Bernardy and Stergios Chatzikyri-

akidis. 2017. A type-theoretical system for the
fracas test suite: Grammatical framework meets
coq. In IWCS 2017 - 12th International Confer-
ence on Computational Semantics - Long papers,
Montpellier, France, September 19 - 22, 2017.
The Association for Computer Linguistics.

Stergios Chatzikyriakidis and Jean-Philippe
Bernardy. 2019. A wide-coverage symbolic
natural language inference system. In Pro-
ceedings of the 22nd Nordic Conference on
Computational Linguistics, NoDaLiDa 2019,
Turku, Finland, September 30 - October 2, 2019,
pages 298–303. Linköping University Electronic
Press.

Guanyi Chen, Kees van Deemter, and Chenghua
Lin. 2019. Generating quantified descriptions of
abstract visual scenes. In Proceedings of the 12th
International Conference on Natural Language
Generation, pages 529–539, Tokyo, Japan. Asso-
ciation for Computational Linguistics.

Thierry Coquand and Gérard P. Huet. 1988.
The calculus of constructions. Inf. Comput.,
76(2/3):95–120.

Simon Dobnik and Robin Cooper. 2013. Spatial
descriptions in type theory with records. In Pro-
ceedings of the IWCS 2013 Workshop on Compu-
tational Models of Spatial Language Interpreta-
tion and Generation (CoSLI-3), pages 1–6, Pots-
dam, Germany. Association for Computational
Linguistics.

Tim Fernando. 2019. Pictorial narratives and tem-
poral refinement. In Semantics and Linguistic
Theory, volume 29, pages 43–62.

Yannis Haralambous, Julie Sauvage-Vincent, and
John Puentes. 2017. A hybrid (visual/natural)
controlled language. Language Resources and
Evaluation, 51(1):93 – 129.

Scott Jarvis and Terence Odlin. 2000. Morpholog-
ical type, spatial reference, and language trans-
fer. Studies in Second Language Acquisition,
22(4):535–556.

Herbert Lange and Peter Ljunglöf. 2018. MULLE:
A Grammar-based Latin Language Learning
Tool to Supplement the Classroom Setting. In
Proceedings of the 5th Workshop on Natural Lan-
guage Processing Techniques for Educational Ap-
plications (NLPTEA ’18), pages 108–112, Mel-
bourn. Australia. Association for Computational
Linguistics.

Per Martin-Löf. 1972. Intuitionistic type theory.
Technical report, University of Stockholm.

Per Martin-Löf. 1984. Intuitionistic type theory,
volume 1 of Studies in proof theory. Bibliopolis.

Ulf Norell. 2007. Towards a practical program-
ming language based on dependent type theory.
Ph.D. thesis, Department of Computer Science
and Engineering, Chalmers University of Tech-
nology, SE-412 96 Göteborg, Sweden.

Aarne Ranta. 1994. Type-Theoretical Grammars,
1st edition. Indices. Oxford University Press,
Oxford, UK.

Aarne Ranta. 2009a. The GF Resource Grammar
Library. Linguistic Issues in Language Technol-
ogy, 2(2).

Aarne Ranta. 2009b. Grammatical Framework:
A Multilingual Grammar Formalism. Language
and Linguistics Compass, 3(5):1242–1265.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI
Publications, Stanford.

Göran Sundholm. 1989. Constructive generalized
quantifiers. Synthese, 79(1):1–12.

Terry Winograd. 1972. Understanding natural lan-
guage. Cognitive Psychology, 3(1):1 – 191.

https://www.aclweb.org/anthology/W17-6801/
https://www.aclweb.org/anthology/W17-6801/
https://www.aclweb.org/anthology/W17-6801/
https://aclweb.org/anthology/W19-6131/
https://aclweb.org/anthology/W19-6131/
https://doi.org/10.18653/v1/W19-8667
https://doi.org/10.18653/v1/W19-8667
https://doi.org/10.1016/0890-5401(88)90005-3
https://www.aclweb.org/anthology/W13-0701
https://www.aclweb.org/anthology/W13-0701
https://doi.org/10.1017/S0272263100004034
https://doi.org/10.1017/S0272263100004034
https://doi.org/10.1017/S0272263100004034
http://aclweb.org/anthology/W18-3715
http://aclweb.org/anthology/W18-3715
http://aclweb.org/anthology/W18-3715
https://journals.linguisticsociety.org/elanguage/lilt/article/view/214/158.html
https://journals.linguisticsociety.org/elanguage/lilt/article/view/214/158.html
http://www.jstor.org/stable/20116631
http://www.jstor.org/stable/20116631
https://doi.org/https://doi.org/10.1016/0010-0285(72)90002-3
https://doi.org/https://doi.org/10.1016/0010-0285(72)90002-3

