
LM-inspector: End-to-end Inspection of Pre-trained Language Models

Felix Morger
University of Gothenburg
felix.morger@gu.se

Abstract

With the coming of of pre-trained language
models, such as ELMo, BERT and XLNet, the
NLP landscape has changed drastically. Due
to their popularity but also computational size
and complexity, many studies have focused on
the inner workings and mechanisms of these
models, especially BERT. While interesting
findings have been made pertaining to their
ability to encode certain linguistic phenomena,
less focus has been made to analyze them in
the context of down-stream tasks. This work
presents a tool for end-to-end inspection of
pre-trained language models. The tool lets a
user define a configuration for querying eval-
uation data and subcomponents of the model
in order to carry out localized interpretation.
By looking at an example from word-sense
disambiguation, we show how the framework
and the method can be applied to make useful
and localized interpretations, which facilitates
transparent inspection in line with the vision
of explainable AI.

1 Introduction

Pre-trained language models have in a few years
become an ubiquitous part of many natural lan-
guage processing systems. Models such as BERT
(Devlin et al., 2019), are highly useful in that they
bring semantically rich word representations and,
unlike predecessors such as Word2Vec (Mikolov
et al., 2013) or fastText (Bojanowski et al., 2017),
are dependent on a given context of surrounding
words. The ability to attain significant out-of-the-
box performance boosts and to fine-tune for partic-
ular tasks, have made them not only very useful but
also important in achieving new state-of-the-art re-
sults in many tasks such as sentiment classification,
question answering and natural language inference
(Devlin et al., 2019).

The sheer size and computational complexity of
these models are both their curse and their bless-

ing. The larger version of transformer-based XL-
Net (Yang et al., 2019), for example, consists of
24 layers, 1024 hidden states, and 16 heads, and
by some estimates can cost from 61 000 to 247
000 dollars to train as well as having the energy
consumption of a car over its entire lifespan1. Be-
sides environmental concerns, questions have been
raised on what kind of linguistic information is
stored in the models and how it is processed. So
much so, that a subfield called BERTology (Rogers
et al., 2020) has emerged. Within this field, in-
teresting findings have been made, for example
that pre-trained language models process linguistic
information similar to that of a traditional NLP-
pipeline (Peters et al., 2018) (Tenney et al., 2019)
and that particular attention heads attend to linguis-
tic notions of syntax and co-reference with high
accuracy, such as direct objects to verbs, determin-
ers to nouns and objects to prepositions (Clark et al.,
2019).

While work in BERTology has given important
insights into the encoded linguistic information
and inner workings of pre-trained language models,
in particular BERT, less focus has been given to
interpretation of pre-trained models in the context
of downstream tasks and domain-specific data. To
address this, this work-in-progress presents a tool,
LM-inspector, which showcases a framework for
transparent end-to-end post-hoc interpretation of
pre-trained language models, in particular BERT,
in the context of task-specific classifiers.

2 Methodology

2.1 Framework

The goal of LM-inspector (Language Model-
inspector) is to enable post-hoc end-to-end inspec-
tion of a pre-trained language model in the context

1Follow this link (accessed 2020-09-08) for a more de-
tailed discussion on the cost of training.

https://syncedreview.com/2019/06/27/the-staggering-cost-of-training-sota-ai-models/


of a complete neural network architecture. Thus,
three components are needed for inspection:

• A trained neural network model.

• A language model, such as BERT, embedded
in the neural network model.

• A set of evaluation data of inputs and output
labels.

LM-inspector makes it easy for different compo-
nents and data points to be analyzed in isolation,
by letting users define a configuration to query for
specific subcomponents of interest. A configura-
tion consists of a scope, which specifies the com-
ponents of the models to be analyzed, e.g. layers
and heads, a specified filter of inputs, for example
by some word(s) or label(s), and an input context,
which specifies the word representation(s) of the
input to look at (most commonly the word repre-
sentation used for the task at hand) and the window
of words around that word.

Given a configuration, a user can choose an in-
spection method to apply. Currently, LM-inspector
supports a basic feature attribution scoring method,
which computes the top-k most attended to enti-
ties. These entities can be words, word positions or
words + positions. Figure 1 illustrates an example
of the top-k most attended to method (where k = 5
and the return entities are words) being applied to
a configuration in the context of a neural network
trained for word-sense disambiguation. It uses the
DistilBert (Sanh et al., 2019) model and is trained
on an annotated sense corpus where the input doc-
ument contains an annotated ambiguous word and
the output label is the sense of that word.

The configuration for this example consists of:

scope layers = [0, 1, 3, 5], heads = [0, 2, 4, 6, 8]

filter labels = [case#2], where case#2 is the spe-
cific WordNet (Fellbaum, 1998) sense of case,
denoting a special set of circumstances, such
as in the sentences “in that event, the first pos-
sibility is excluded” or “it may rain in which
case the picnic will be canceled”.

input context the word representation of the am-
biguous word case in the input text.

For our particular data set and configuration fil-
ter, the configuration returns 10 samples, which the
classifier scored with 0.69 accuracy. Apart from the

special token <UNK> as well as non-lexical words
and delimiters such as the, of and , we see words
like held attended to in the middle layers l1 and l3
while cases and reaches get more prominence in
the last layer l5.

2.2 Implementation

LM-inspector is implemented in Python
(Van Rossum and Drake, 2009) and uses
PyTorch (Paszke et al., 2017) and the transformers
library (Wolf et al., 2019). Visualization is done
with the JavaScript library D3.js (Bostock et al.,
2011). LM-inspector is, on the one hand, an API
to make the kind of inspection described above,
and, on the other hand, a visualization tool to aid
in that inspection, which will be accessible with
Jupyter Notebook (Kluyver et al., 2016).

3 Discussion

This work-in-progress project presents a frame-
work for end-to-end inspection of pre-trained lan-
guage models. By providing a framework for
querying specific pre-trained language model com-
ponents as well as evaluation data and applying
an inspection method of top-k most attended to
words, we have shown how the tool can be used to
carry out localized interpretation. As such, this tool
facilitates some desirable properties of machine
learning interpretability, namely transparency and
decomposability (Lipton, 2018), and puts it more in
line with the goals of explainable AI in increasing
accountability of AI systems. With that said, in
practical terms, the tool can be used both on the
developer side to better understand the inner work-
ings of a classifier as well as on the end-user side
as a part of a product solution.

However, general linguistic inquiry can also ben-
efit from a framework like the one suggested in this
work. One the one hand, it could be used to find
evidence of linguistic phenomena relating to par-
ticular word inputs or output labels. For example a
developer of a WSD-classifier could use the top-k
most attended to entities method described in this
work to see which words of a particular sense are
most attended to. On the other hand, it could be
used to discover previously unknown phenomena,
for example a designer of a word sense annotated
corpus could look at word senses with high error
rates to determine if new senses need to be added.

Although this work has focused on a specific
type of interpretation method, namely feature at-



Figure 1: The top 5 most attended words across all components, i.e. layers and heads, defined in scope.

tribution, in the end that should preferably not be
the be-all end-all method to interpret pre-trained
language models. In the best of all worlds, this tool
should be used in conjunction with other interpreta-
tion techniques, such as probing tasks or adversar-
ial data sets, in order to make a broad and holistic
diagnosis of the inner workings of pre-trained lan-
guage models.

Remaining work for the tool consists of extend-
ing the set of available interpretation methods, with
a focus on attribution scores and integrating the
tool into Jupyter Notebook. Although the focus
is at the moment primarily on Transformer-based
architectures, such as BERT, the aim is to support
non-transformer based architectures as well. An-
other important aim is to carry out case studies of
different neural network architectures and down-
stream tasks as well as pre-trained language models
to assess the feasibility of the tool in a real world
application.

Complementary visualization of inspection re-
sults will remain an important feature since it in-
creases the transparency of the system. With visu-
alization such as in Figure 1, users can more easily
identify relevant patterns of the models (in this case
words that are highly attended to). For this, a lot

of inspiration can be drawn from related work in
computer vision, where visualization as a means
for explainable AI is quite evolved, such as heat
mapping of salient pixels (Bach et al., 2015) or
activation maximation of specific neural network
components (Olah et al., 2018).

References
Sebastian Bach, Alexander Binder, Grégoire Mon-

tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7):e0130140.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

M. Bostock, V. Ogievetsky, and J. Heer. 2011. D data-
driven documents. IEEE Transactions on Visualiza-
tion and Computer Graphics, 17(12):2301–2309.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828


J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of deep bidi-
rectional transformers for language understanding.
In NAACL-HLT.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Thomas Kluyver, Benjamin Ragan-Kelley, Fer-
nando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián
Avila, Safia Abdalla, and Carol Willing. 2016.
Jupyter notebooks – a publishing format for repro-
ducible computational workflows. In Positioning
and Power in Academic Publishing: Players, Agents
and Agendas, pages 87 – 90. IOS Press.

Zachary C Lipton. 2018. The mythos of model inter-
pretability. Queue, 16(3):31–57.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan
Carter, Ludwig Schubert, Katherine Ye, and Alexan-
der Mordvintsev. 2018. The building blocks of inter-
pretability. Distill, 3(3):e10.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.

Matthew Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018. Dissecting contextual
word embeddings: Architecture and representation.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1499–1509, Brussels, Belgium. Association
for Computational Linguistics.

Anna Rogers, O. Kovaleva, and Anna Rumshisky. 2020.
A primer in BERTology: What we know about how
BERT works. ArXiv, abs/2002.12327.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. In ACL.

Guido Van Rossum and Fred L. Drake. 2009. Python 3
Reference Manual. CreateSpace, Scotts Valley, CA.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,

Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5753–5763.

https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179

