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What did we do?

I We did initial experiments on automated non-native speech
assessment using a publicly available corpus.

I We looked into the consistency of the built models and the
most predictive features in them.

I On one hand, it has all been done before with different
resources.

I On the other hand, there is still something new to learn from
these experiments.
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Research Questions

1. RQ1: Which classifier performs the best in terms of
agreement with human scorers when compared using multiple
performance measures?

2. RQ2: How consistent are the machine scores rendered by the
best performing model?

3. RQ3: What features are influential in predicting human
scores?



Experimental Setup - Corpus

I International Corpus of Network of Asian Learners
(ICNALE-Spoken)

I consists of oral responses provided by college students to two
opinion-based prompts

I Proficiency is indicated on the CEFR: A2 0 (N=100), B1 1
(N=211), B1 2 (N=469), and B2 0 (N=160), by converting
from other existing exam scores.

I In order to protect the participants’ identity, speech samples
were morphed using a speech morphing system



Experimental Setup - Features

I Fluency measures (e.g., number of pauses, speech rate,
articulation rate etc.) using Praat

I Audio signal features (e.g., energy, spectral flux etc) using
PyAudioAnalysis

I Lexical Richness features (Lu, 2012)

I Syntactic complexity features (Lu, 2014)



Experimental Setup - Approach

I classification models trained and tested separately for each
prompt, which we call intrinsic evaluation (with 10-fold cross
validation)

I classification models trained on one prompt, but tested on the
other, which we call extrinsic evaluation.

I Synthetic Minority Oversampling Technique (SMOTE) to
address data imbalance.

I Multiple evaluation measures: accuracy, precision, recall,
F1-score, Cohen’s Kappa, Quadratically Weighted Kappa, and
Spearman correlation.

I 95% confidence intervals to check model consistency.



Results Summary

I The best-performing model with accuracy of about 73% for
both prompts is achieved by using oversampling and random
forests.

I The accuracies drop substantially for the oversampled data
sets, but the accuracies for the non-oversampled versions
remain consistent.

I Various feature selection schemes consistently pointed to the
dominance of vocabulary related features for this classification
task.



Limitations and Outlook

I We relied on manual transcriptions.. should look for
automatic transcriptions in future work.

I Difference between over-sampled and non-oversampled models
needs further exploration to understand whether it is
experimental artefact or there is something else to it.

I Dataset limitations:

1. Morphed speech samples
2. Labeling of the dataset is done in an indirect way by

converting scores from other existing tests, not by scoring
these prompt responses.

- we don’t have a way to address these, but we hope easily
accessible datasets of the future address such concerns.
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