Comparing Annotation Frameworks for Lexical Semantic Change

November 8, 2018

Dominik Schlechtweg, Sabine Schulte im Walde
Institute for Natural Language Processing, University of Stuttgart, Germany
Motivation

- **evaluation** in research on Lexical Semantic Change Detection (LSCD) is still an unsolved issue (e.g. Cook, Lau, McCarthy, & Baldwin, 2014; Frermann & Lapata, 2016; Lau, Cook, McCarthy, Newman, & Baldwin, 2012; Takamura, Nagata, & Kawasaki, 2017)

- across languages there is no standard test set that goes beyond a few hand-selected examples

- as a result, computational models of semantic change are evaluated only superficially, while some of their predictions can be shown to be biased (Dubossarsky, Weinshall, & Grossman, 2017).

→ we need an evaluation task definition and evaluation data
General Criteria for Annotation

- allow calculation of agreement between annotators
- rely on clearly defined linguistic concepts
- preferably doable as a non-expert
- scale easily
Lexical Semantic Change

- LSC is inherently related to loss or emergence of word senses, as it is either:
 - **innovative**: emergence of a full-fledged additional meaning of a word, or
 - **reductive**: loss of a full-fledged meaning of a word (cf. Blank, 1997, p. 113)

 → need to distinguish word senses

 → problem of definition and dichotomy of word senses
Annotating LSC

- we developed **DURel** (Schlechtweg, Schulte im Walde, & Eckmann, 2018)
- yields high inter-annotator agreement of non-experts
- relies on intuitive linguistic concept of **semantic relatedness**
- it is well-grounded in cognitive semantic theory
- avoids assignment of particular sense to a word use
- requires only minimal preparation efforts
Example of Innovative Meaning Change

EARLIER

(1) *An schrecklichen Donnerwettern und heftigen Regengüssen fehlt es hier auch nicht.*

‘There is no lack of horrible thunderstorms and heavy rainstorms.’

LATER

(2)

a) *Oder es überschauerte ihn wie ein Donnerwetter mit Platzregen.*

‘Or he was doused like a thunderstorm with a heavy shower.’

b) *Potz Donnerwetter!*

‘Man alive!’
Main Idea

t_1: EARLIER

t_2: LATER

Figure 1: 2-dimensional use spaces (semantic constellation) in two time periods with a target word w undergoing innovative meaning change. Dots represent uses of w. Spatial proximity of two uses means high relatedness.
Table 1: Four-point scale of relatedness (Schlechtweg et al., 2018).

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated
0: Cannot decide
Study details

- **five annotators** rated 1,320 German use pairs on relatedness scale in Table 1
- for **22 target words** we randomly sampled 20 use pairs per group from DTA corpus
- there are **three groups**: EARLIER (1750-1800), LATER (1850-1900) and COMPARE
- order within pairs was randomized, pairs from all groups were mixed and randomly ordered
Judgment Frequencies in Annotation Groups

Figure 2: Judgment frequency for *Donnerwetter* (innovative).
Results – Inter-Annotator Agreement

- average pairwise correlation of **0.66**
- higher than in Erk, McCarthy, and Gaylord (2013) (between 0.55 and 0.62)
Shortcomings

Figure 3: Innovative followed by reductive meaning change. Mean relatedness change predicts no LSC.
Alternative Annotation Strategy

- the above-examined measure of change collapses in certain semantic constellations
- how can we improve this?
- we will try to retrieve the underlying sense frequency distributions
Choosing a Target Word and Time Periods

Figure 4: Underlying semantic constellation for a target word.

$\mathbf{t_1}$: EARLIER

$\mathbf{t_2}$: LATER
Choosing Centroids

t_1: EARLIER

t_2: LATER

Figure 5: Sense centroids for each sense cluster.
Comparing Uses

t_1: EARLIER

t_2: LATER

Figure 6: Comparison of uses from different time periods against sense centroids.
Comparing Uses

Figure 7: Comparison of uses from different time periods against sense centroids.
Comparing Uses

Figure 8: Comparison of uses from different time periods against sense centroids.
Pros and Cons

▶ advantages:
 ▶ still graded assignment
 ▶ centroids represent meanings (no definition needed)
 ▶ centroids can be chosen to be clear and distinguishable contexts
 ▶ graphs provide an accessible method of visualization

▶ disadvantages:
 ▶ strong assumption of clear-cut clusters and good choice of centroids
 ▶ annotation time increases sharply with polysemous words
 ▶ annotation is test for whether uses can be assigned to different clusters as represented by the chosen centroids
 ▶ annotators either verify or falsify the choice of centroids
 ▶ bad choices will be obvious from the annotated data
Study Details

- the annotation is carried out maximally parallel to Schlechtweg et al. (2018) (i.e., same guidelines, scale, annotators, target lemmas, time periods)
- the only difference is **sampling process**:
 1. choose a target lemma and time periods
 2. sample 10 contexts for each time period (**EARLIER** and **LATER**)
 3. choose centroid uses
 4. combine each use with each centroid into a use pair
 5. combine each centroid with each other centroid
 6. switch the order of every second pair and randomly shuffle all pairs
- by this we obtain a total of 788 use pairs
Retrieval of Sense Frequency Distributions

- can be tricky in the case of e.g. equivocal judgments
- sources of conflict are
 - uses assigned to more than one centroid,
 - uses assigned to none of the centroids,
 - centroids judged not to be clearly distinct,
 - zero-judgments (incomprehensible),

→ we need a way to deal with these cases
we deal with these cases in the following way:

1. zero-judgments are ignored,
2. if there are centroid pairs with mean judgments ≥ 2.5, they are treated as representing the same meaning,
3. centroids are collapsed transitively,
4. uses with a mean judgment with a certain centroid ≥ 2.5 will be assigned to that centroid,
5. if a use is assigned to more than one centroid, the one with the highest judgment is chosen,
6. if a use is assigned to none of the centroids, it is treated as representing an additional meaning
Retrieval of Word Sense Distributions

- with this algorithm we can automatically retrieve sense frequency distributions from the annotated data
- if the data doesn’t allow to do this safely, the algorithm will provide us with the necessary knowledge to exclude the data/revise the annotation style
- the data can be conveniently visualized as (spatial plots of) usage graphs constructed by the annotation data
- the inferred sense frequency distributions show up as distinct clusters of uses in the spatial plots of the respective usage graphs
Figure 9: Graph visualization retrieved from annotation data from EARLIER time period for target *Abend*. Centroids are plotted red. Continuous lines mark edge judgments ≥ 2.5, while dashed lines mark edge weights ≤ 2.5. Node distance between connected! nodes (mostly) reflects their judgment score (edge label).
Examples

Figure 10: Graph visualization of EARLIER time period for target *Abend* with inferred distribution: $T_1 = (1, 9)$. Different colors mark uses of different meanings.
Examples

Figure 11: Graph visualization of LATER time period for target Abend.
Figure 12: Graph visualization of later time period for target *Abend* with inferred distribution: $T_2 = (0, 10)$.
Examples

Figure 13: Graph visualization of latter time period for target Abend. Inferred distributions $T_1 = (1, 9)$ and $T_2 = (0, 10)$. Transparent nodes mark uses from t_1 (EARLIER).
Examples

Figure 14: Graph visualization of later time period for target Abend. Inferred distributions $T_1 = (1, 9)$ and $T_2 = (0, 10)$.
Examples

Figure 15: Target: Vorwort. Time period: t_1.
Figure 16: Target: Vorwort. Time period: t_1. Distribution: $T_1 = (9, 0, 1)$
Figure 17: Target: Vorwort. Time period: t_2.
Examples

Figure 18: Target: Vorwort. Time period: t_2. Distribution: $T_2 = (0, 10, 0)$
Figure 19: Target: Vorwort.
Examples

Figure 20: Target: *Vorwort*. Inferred distributions $T_1 = (9, 0, 1)$ and $T_2 = (0, 10, 0)$.
Figure 21: Target: *billig*. Inferred distributions $T_1 = (10, 0)$ and $T_2 = (5, 5)$.
Examples

Figure 22: Target: *geharnischt*.
Examples

Figure 23: Target: *geharnischt*. Inferred distributions $T_1 = (8, 2)$ and $T_2 = (9, 1)$.
Annotation Results – Inter-Annotator Agreement

- average pairwise correlation of **0.72**
- higher than in Schlechtweg et al. (2018) (0.66)
Overview

<table>
<thead>
<tr>
<th>Description</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centroids collapsed across all targets</td>
<td>8/43 (14/22 targets with >1 centroids)</td>
</tr>
<tr>
<td>Centroid conflicts</td>
<td>2</td>
</tr>
<tr>
<td>Use conflicts</td>
<td>37/397</td>
</tr>
<tr>
<td>Uses excluded due to 0-judgment</td>
<td>17/397</td>
</tr>
<tr>
<td>Uses finally uniquely assigned</td>
<td>363/380</td>
</tr>
<tr>
<td>Uses finally multiply assigned</td>
<td>17/380</td>
</tr>
<tr>
<td>Assigned by maximum judgment</td>
<td>13/17</td>
</tr>
<tr>
<td>Randomly assigned</td>
<td>4/17</td>
</tr>
</tbody>
</table>

Table 2: Overview of annotation results with conflicts.
Some Conclusions

- it generally works
- data can be iteratively revised
- centroids should be checked iteratively with annotators before starting the annotation
- if you want to work with DURel, please write me an email!

