Skip to main content

sbx-eng-namedentity-stanza

Analysis citation Information

Språkbanken Text (2022). sbx-eng-namedentity-stanza (updated: 2022-08-10). [Analysis]. Språkbanken Text. https://doi.org/10.23695/rfqw-9p16
BibTeX Additional ways to cite the dataset.
Named entity recognition with Stanza's standard model for English

Named entity recognition (NER) enables the detection of named entities (e.g. personal names, organizations, geographical locations) in the text.

Example

This analysis is used with Sparv. Check out Sparv's quick start guide to get started!

To use this analysis, add the following lines under export.annotations in the Sparv corpus configuration file:

- stanza.ne  # Named entity segments from Stanza
- stanza.ne:stanza.ne_type  # Named entitiy types from Stanza

In order to use this annotation you need to add the following setting to your Sparv corpus configuration file:

metadata:
  language: eng

For more info on how to use Sparv, check out the Sparv documentation.

Example output:

<token>The</token>
<ne ne_type="NORP">
  <token>Swedish</token>
</ne>
<token>chemist</token>
<ne ne_type="PERSON">
  <token>Alfred</token>
  <token>Bernhard</token>
  <token>Nobel</token>
</ne>
<token>was</token>
<token>born</token>
<token>on</token>
<ne ne_type="DATE">
  <token>21</token>
  <token>October</token>
  <token>1833</token>
</ne>
<token>in</token>
<ne ne_type="GPE">
  <token>Stockholm</token>
</ne>
<token>.</token>

Other references

  • Stanza: Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton and Christopher D. Manning. 2020

  • Stanza: A Python Natural Language Processing Toolkit for Many Human Languages. In Association for Computational Linguistics (ACL) System Demonstrations. 2020

Type

  • Analysis

Task

  • named entity recognition

Dependencies

External tools

Stanza
Apache License 2.0

Models

Keyword

  • stanza

Created

2022-08-10

Updated

2022-08-10

Contact

sb-info@svenska.gu.se