@inProceedings{holdt-etal-2024-towards-341134, title = {Towards an Ideal Tool for Learner Error Annotation}, abstract = {Annotation and analysis of corrections in learner corpora have always presented technical challenges, mainly on account of the fact that until now there has not been any standard tool available, and that original and corrected versions of texts have been mostly stored together rather than treated as individual texts. In this paper, we present CJVT Svala 1.0, the Slovene version of the SVALA tool, which was originally used for the annotation of Swedish learner language. The localisation into Slovene resulted in the development of several new features in SVALA such as the support for multiple annotation systems, localisation into other languages, and the support for more complex annotation systems. Adopting the parallel aligned approach to text visualisation and annotation, as well as storing the data, combined with the tool supporting this, i.e. SVALA, are proposed as new standards in Learner Corpus Research.}, booktitle = {2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings}, author = {Holdt, Špela Arhar and Erjavec, Tomaž and Kosem, Iztok and Volodina, Elena}, year = {2024}, ISBN = {9782493814104}, }