Hoppa till huvudinnehåll

sbx-swe-sentiment-transformers-kblab_robust_swedish_sentiment_multiclass

Analyscitering Information

Språkbanken Text (2025). sbx-swe-sentiment-transformers-kblab_robust_swedish_sentiment_multiclass (uppdaterad: 2025-10-03). [Analysis]. Språkbanken Text. https://doi.org/10.23695/wh4w-na93
BibTeX Ytterligare sätt att citera datamängden.
Sentimentanalys per mening med KBLab/robust-swedish-sentiment-multiclass

Sentimentanalys per mening med transformers och KBLab/robust-swedish-sentiment-multiclass.

Exempel

This analysis is used with Sparv. Check out Sparv's quick start guide to get started!

To use this analysis, add the following line under export.annotations in the Sparv corpus configuration file:

- <sentence>:sbx_sentence_sentiment_kb_sent.sentence-sentiment--kb-sent  # Sentiment analysis of sentence with KBLab/robust-swedish-sentiment-multiclass

You also need to install the following plugin: sbx_sentence_sentiment_kb_sent.

For general information on how to install plugins, see here.

For more info on how to use Sparv, check out the Sparv documentation.

Example output:

<sentence sentence-sentiment--kb-sent="|NEUTRAL:0.946|">
<token pos="JJ">Stora</token>
<token pos="NN">regnmängder</token>
<token pos="VB">väntas</token>
<token pos="PP">under</token>
<token pos="NN">måndagen</token>
<token pos="KN">och</token>
<token pos="PM">SMHI</token>
<token pos="VB">har</token>
<token pos="VB">utfärdat</token>
<token pos="DT">en</token>
<token pos="JJ">gul</token>
<token pos="NN">varning</token>
<token pos="PP">för</token>
<token pos="PC">skyfallsliknande</token>
<token pos="NN">regn</token>
<token pos="PP">över</token>
<token pos="JJ">stora</token>
<token pos="NN">delar</token>
<token pos="PP">av</token>
<token pos="NN">landets</token>
<token pos="JJ">södra</token>
<token pos="JJ">halva</token>
<token pos="MAD">.</token>
</sentence>

Typ

  • Analys

Uppgift

  • sentimentanalys

Enhet

  • mening

Beroenden

Externa verktyg

transformers
Apache-2.0 license

Modeller

KBLab/robust-swedish-sentiment-multiclass
KBLab presents a robust, multi-label sentiment classifier trained on Swedish texts. The model is robust in the sense that it is trained on multiple datasets of different text types and allows labeling of neutral as well positive and negative texts.
Apache-2.0 license

Nyckelord

  • transformers
  • kb-lab

Skapad

2024-05-28

Uppdaterad

2025-10-03

Kontakt

sb-info@svenska.gu.se