Skip to main content

sbx-swe-lemmatization-stanza-stanzalem

Analysis citation Information

Språkbanken Text (2022). sbx-swe-lemmatization-stanza-stanzalem (updated: 2022-08-10). [Analysis]. Språkbanken Text. https://doi.org/10.23695/xf1y-2g97
BibTeX Additional ways to cite the dataset.
Swedish citation form analysis (base forms, lemmas) by Stanza, trained on SUC3

In 2020, the Stanza tool was trained and tested on the SUC3 corpus in order to create a high-quality analysis. Currently (in 2024), this analysis is available in Sparv, but it is not provided by default, since it is not fully compatible with SALDO-style lemmas. This model's advantage is that it can be used to lemmatize any token, including out-of-vocabulary tokens.

Example

This analysis is used with Sparv. Check out Sparv's quick start guide to get started!

To use this analysis, add the following line under export.annotations in the Sparv corpus configuration file:

- <token>:stanza.baseform  # Baseform from Stanza

For more info on how to use Sparv, check out the Sparv documentation.

Example output:

<token baseform="det">Det</token>
<token baseform="här">här</token>
<token baseform="vara">är</token>
<token baseform="en">en</token>
<token baseform="korpus">korpus</token>
<token baseform=".">.</token>

Evaluation results

Accuracy = 0.99

Other references

  • Stanza: Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton and Christopher D. Manning. 2020

  • Stanza: A Python Natural Language Processing Toolkit for Many Human Languages. In Association for Computational Linguistics (ACL) System Demonstrations. 2020

  • SUC3: https://spraakbanken.gu.se/en/resources/suc3

Type

  • Analysis

Task

  • lemmatization

Unit

  • token

Dependencies

External tools

Stanza
Apache License 2.0

Models

Stanzalem
CC BY 4.0

Tagset

Trained on

Keyword

  • stanza

Created

2020-12-07

Updated

2022-08-10

Contact

sb-info@svenska.gu.se