Sentiment analysis per sentence using KBLab/robust-swedish-sentiment-multiclass
      Sentiment analysis per sentence using transformers with KBLab/robust-swedish-sentiment-multiclass.
 Additional ways to cite the dataset.
        Additional ways to cite the dataset.
    Sentiment analysis per sentence using transformers with KBLab/robust-swedish-sentiment-multiclass.
This analysis is used with Sparv. Check out Sparv's quick start guide to get started!
To use this analysis, add the following line under export.annotations in the Sparv corpus configuration file:
- <sentence>:sbx_sentiment_kb_sent.sentiment--kb-sent  # Sentiment analysis of sentence with KBLab/robust-swedish-sentiment-multiclass
You also need to install the following plugin: sbx_sentiment_kb_sent.
For general information on how to install plugins, see here.
For more info on how to use Sparv, check out the Sparv documentation.
Example output:
<sentence sentiment--kb-sent="|NEUTRAL:0.946|">
<token pos="JJ">Stora</token>
<token pos="NN">regnmängder</token>
<token pos="VB">väntas</token>
<token pos="PP">under</token>
<token pos="NN">måndagen</token>
<token pos="KN">och</token>
<token pos="PM">SMHI</token>
<token pos="VB">har</token>
<token pos="VB">utfärdat</token>
<token pos="DT">en</token>
<token pos="JJ">gul</token>
<token pos="NN">varning</token>
<token pos="PP">för</token>
<token pos="PC">skyfallsliknande</token>
<token pos="NN">regn</token>
<token pos="PP">över</token>
<token pos="JJ">stora</token>
<token pos="NN">delar</token>
<token pos="PP">av</token>
<token pos="NN">landets</token>
<token pos="JJ">södra</token>
<token pos="JJ">halva</token>
<token pos="MAD">.</token>
</sentence>