Skip to main content


	title        = {Shallow Discourse Parsing with Conditional Random Fields},
	abstract     = {Parsing discourse is a challenging natural language processing task. In this paper we take a data driven approach to identify  arguments of explicit discourse connectives. In contrast to previous work we do not make any assumptions on the span of arguments and consider parsing as a token-level sequence labeling task. We design the argument segmentation task as a cascade of decisions based on conditional random fields (CRFs). We train the CRFs on lexical, syntactic and semantic features extracted from the Penn Discourse Treebank and evaluate feature combinations on the commonly used test split. We show that the best combination of features includes syntactic and semantic features. The comparative error analysis investigates the performance variability over connective types and argument positions.},
	booktitle    = {Proceedings of 5th International Joint Conference on Natural Language Processing; editors Haifeng Wang and David Yarowsky; Chiang Mai, Thailand; November 8-13, 2011},
	author       = {Ghosh, Sucheta and Johansson, Richard and Riccardi, Giuseppe and Tonelli, Sara},
	year         = {2011},
	pages        = {1071--1079},